
IBM i

Database
SQL XML Programming
Version 7.1

���

IBM i

Database
SQL XML Programming
Version 7.1

���

Note
Before using this information and the product it supports, read the information in “Notices” on
page 223.

This edition applies to IBM i 7.1 (product number 5770-SS1) and to all subsequent releases and modifications until
otherwise indicated in new editions. This version does not run on all reduced instruction set computer (RISC)
models nor does it run on CISC models.

This document may contain references to Licensed Internal Code. Licensed Internal Code is Machine Code and is
licensed to you under the terms of the IBM License Agreement for Machine Code.

© Copyright IBM Corporation 2012, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

SQL XML programming 1
How to read the syntax diagrams 1
PDF file for SQL XML programming 2
SQL statements and SQL/XML functions 3

XML input and output overview 4
Comparison of XML and relational models . . . 5
Tutorial for XML 6

Exercise 1: Creating a table that can store XML
data 6
Exercise 2: Inserting XML documents into XML
typed columns. 7
Exercise 3: Updating XML documents stored in
an XML column 8
Exercise 4: Validating XML documents against
XML schemas 8
Exercise 5: Transforming with XSLT
stylesheets 10

Inserting XML data 13
Addition of XML columns to existing tables 13
Insertion into XML columns 13
XML parsing 14

SQL/XML publishing functions for constructing
XML values 16

Example: Construct an XML document with
values from a single table 17
Example: Construct an XML document with
values from multiple tables 17
Example: Construct an XML document with
values from table rows that contain null
elements 18
Example: Transforming with XSLT stylesheets 19
Example: Using XSLT as a formatting engine 21
Example: Using XSLT for data exchange . . . 22
Example: Using XSLT to remove namespaces 24
Important considerations for transforming
XML documents 27
Special character handling in SQL/XML
publishing functions 27
XML serialization 28
Differences in an XML document after storage
and retrieval 29
Data types for archiving XML documents . . 30

Using XMLTABLE to reference XML content as a
relational table 30

Example: Use XMLTABLE to handle missing
elements 31
Example: Use XMLTABLE to subset result
data 32
Example: Use XMLTABLE to handle multiple
values 32
Example: Use XMLTABLE with namespaces 34
Example: Number result rows for XMLTABLE 37

Updating XML data 37
Deletion of XML data from tables 38

XML schema repository 38
Application programming language support . . 39

XML column inserts and updates in CLI
applications 40
XML data retrieval in CLI applications . . . 41
Declaring XML host variables in embedded
SQL applications 41

Example: Referencing XML host variables
in embedded SQL applications 42
Recommendations for developing
embedded SQL applications with XML . . 43
Identifying XML values in an SQLDA . . 44

Java 44
XML data in JDBC applications. 44
XML data in SQLJ applications 49

Routines 52
XML support in SQL procedures 52
XML data type support in external routines 53

XML data encoding. 57
Encoding considerations when storing or
passing XML data 57

Encoding considerations for input of XML
data to a database 57
Encoding considerations for retrieval of
XML data from a database 58
Encoding considerations for passing XML
data in routine parameters 58
Encoding considerations for XML data in
JDBC and SQLJ applications 58

Effects of XML encoding and serialization on
data conversion 58

Encoding scenarios for input of internally
encoded XML data to a database 59
Encoding scenarios for input of externally
encoded XML data to a database 60
Encoding scenarios for retrieval of XML
data with implicit serialization 62
Encoding scenarios for retrieval of XML
data with explicit XMLSERIALIZE. . . . 64

Mappings of encoding names to effective
CCSIDs for stored XML data 66
Mappings of CCSIDs to encoding names for
serialized XML output data 66

Annotated XML schema decomposition 67
Decomposing XML documents with annotated
XML schemas 67
Registering and enabling XML schemas for
decomposition 67
Sources for annotated XML schema
decomposition 68
XML decomposition annotations 68

Specification and scope of XML decomposition
annotations 68
Annotations as attributes 69
Annotations as structured child elements . . 69
Global annotations 69
XML decomposition annotations - Summary 70

© Copyright IBM Corp. 2012, 2012 iii

||
||
||
||
|
||
|
||
|
||
|
||
|
||
||
||
||
||
|
||
|
||
|
||
|
|
||
||
||
||
||
|
||
|
||
||
|
||
||
|
||
|
||
|
||
|
||
||
||
||
||
||
||

|
||
||
|
||
|
||
|
||
||
||
||
||
||
||
||
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
||
|
||
|
||
|
||
||
|
||
||
||
||
||

db2-xdb:defaultSQLSchema decomposition
annotation 70
db2-xdb:rowSet decomposition annotation . . 71
db2-xdb:table decomposition annotation . . . 75
db2-xdb:column decomposition annotation . . 78
db2-xdb:locationPath decomposition
annotation 80
db2-xdb:expression decomposition annotation 82
db2-xdb:condition decomposition annotation 86
db2-xdb:contentHandling decomposition
annotation 89
db2-xdb:normalization decomposition
annotation 93
db2-xdb:order decomposition annotation . . 95
db2-xdb:truncate decomposition annotation . 96
db2-xdb:rowSetMapping decomposition
annotation 98
db2-xdb:rowSetOperationOrder
decomposition annotation 101
Keywords for annotated XML schema
decomposition 102

Treatment of CDATA sections in annotated XML
schema decomposition 103
NULL values and empty strings in annotated
XML schema decomposition 103
Checklist for annotated XML schema
decomposition 104
Examples of mappings in annotated XML
schema decomposition 104

Annotations of derived complex types . . . 104
Decomposition annotation example: Mapping
to an XML column 110
Decomposition annotation example: A value
mapped to a single table that yields a single
row. 111
Decomposition annotation example: A value
mapped to a single table that yields multiple
rows 113
Decomposition annotation example: A value
mapped to multiple tables 114
Decomposition annotation example:
Grouping multiple values mapped to a single
table 116
Decomposition annotation example: Multiple
values from different contexts mapped to a
single table 118
XML schema to SQL types compatibility for
annotated schema decomposition 119
Limits and restrictions for annotated XML
schema decomposition 125
Schema for XML decomposition annotations 127

XML data model 128
Sequences and items 128
Atomic values 128
Nodes 129

Document nodes 130
Element nodes 131
Attribute nodes. 132
Text nodes 133
Processing instruction nodes 133
Comment nodes 134

Data model generation 134
XML values in SQL 135

Overview of XPath 137
Case sensitivity in DB2 XPath 138
Whitespace in DB2 XPath 139
Comments in DB2 XPath 139
Character set 140
Default collation 140
XML namespaces and qualified names in DB2
XPath 140
XPath type system. 141

Overview of the type system 141
Constructor functions for built-in data types 141
Generic data types 142

xs:anyType 142
xs:anySimpleType 142
xs:anyAtomicType 142

Data types for untyped data 142
xs:untyped 142
xs:untypedAtomic 143

xs:string 143
Numeric data types 143

xs:decimal 143
xs:double 144
xs:integer 144
Range limits for numeric types 145

xs:boolean 145
Date and time data types 146

xs:date 146
xs:time 147
xs:dateTime 147
xs:duration 149
xs:dayTimeDuration 150
xs:yearMonthDuration 151

Casts between XML schema data types . . . 152
XPath prologs and expressions 154

Prologs 155
Namespace declarations 155
Default namespace declarations 156

Expression evaluation and processing . . . 157
Atomization 157
Type promotion 157
Subtype substitution 158

Primary expressions 158
Literals 158
Variable references in DB2 XPath 159
Parenthesized expression 160
Context item expressions 160
Function calls 160

Path expressions 161
Axis steps 162
Abbreviated syntax for path expressions 167

Filter expressions 168
Arithmetic expressions 168
Comparison expressions 171

General comparisons 171
Logical expressions 172
Regular expressions 174

Descriptions of XPath functions 176
fn:abs function 179
fn:adjust-date-to-timezone function 180

iv IBM i: SQL XML Programming

|
||
||
||
||
|
||
||
||
|
||
|
||
||
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
||
|
||
|
|
||
|
|
||
|
||
|
|
||
|
|
||
|
||
|
||
||

fn:adjust-dateTime-to-timezone function . . 182
fn:adjust-time-to-timezone function 183
fn:boolean function 185
fn:compare function 185
fn:concat function 186
fn:contains function 187
fn:count function 187
fn:current-date function 188
fn:current-dateTime function 188
db2-fn:current-local-date function. 188
db2-fn:current-local-dateTime function . . . 189
db2-fn:current-local-time function 189
fn:current-time function 190
fn:data function 190
fn:dateTime function 190
fn:day-from-date function 191
fn:day-from-dateTime function 191
fn:days-from-duration function 192
fn:distinct-values function 193
fn:exists function 193
fn:hours-from-dateTime function 194
fn:hours-from-duration function 194
fn:hours-from-time function 195
fn:implicit-timezone function 196
fn:last function 196
fn:local-name function 197
db2-fn:local-timezone function. 198
fn:lower-case function 198
fn:matches function 199
fn:max function 200
fn:min function 201
fn:minutes-from-dateTime function 202
fn:minutes-from-duration function 203
fn:minutes-from-time function 203

fn:month-from-date function 204
fn:month-from-dateTime function. 204
fn:months-from-duration function 205
fn:name function 206
fn:normalize-space function 207
fn:not function 207
fn:position function 208
fn:replace function. 209
fn:round function 210
fn:seconds-from-dateTime function 211
fn:seconds-from-duration function 211
fn:seconds-from-time function 212
fn:starts-with function 213
fn:string function 213
fn:string-length function 214
fn:substring function 214
fn:sum function 215
fn:timezone-from-date function 215
fn:timezone-from-dateTime function 216
fn:timezone-from-time function 217
fn:tokenize function 217
fn:translate function 219
fn:upper-case function 219
fn:year-from-date function 220
fn:year-from-dateTime function 220
fn:years-from-duration function 221

Notices 223
Programming interface information 225
Trademarks 225
Terms and conditions. 225

Index 227

Contents v

vi IBM i: SQL XML Programming

SQL XML programming

DB2® for IBM® i provides support to store and retrieve XML data using Structured Query Language
(SQL). Objects defined using SQL such as tables, functions, and procedures can use the XML data type
for column, parameter, and variable definitions. In addition to an XML data type, there are built-in
functions and procedures that can be used to generate XML documents and to retrieve all or part of an
XML document.

Note: By using the code examples, you agree to the terms of the “Code license and disclaimer
information” on page 222.

How to read the syntax diagrams
The following rules apply to the syntax diagrams used in this book.
v Read the syntax diagrams from left to right, from top to bottom, following the path of the line.

The ��─── symbol indicates the beginning of the syntax diagram.
The ───� symbol indicates that the syntax is continued on the next line.
The �─── symbol indicates that the syntax is continued from the previous line.
The ───�� symbol indicates the end of the syntax diagram.
Diagrams of syntactical units start with the |─── symbol and end with the ───| symbol.

v Required items appear on the horizontal line (the main path).

�� required_item ��

v Optional items appear below the main path.

�� required_item
optional_item

��

If an item appears above the main path, that item is optional, and has no effect on the execution of the
statement and is used only for readability.

�� required_item
optional_item

��

v If more than one item can be chosen, they appear vertically, in a stack.
If one of the items must be chosen, one item of the stack appears on the main path.

�� required_item required_choice
required_choice

��

If choosing one of the items is optional, the entire stack appears below the main path.

�� required_item
optional_choice
optional_choice

��

If one of the items is the default, it will appear above the main path and the remaining choices will be
shown below.

© Copyright IBM Corp. 2012, 2012 1

�� required_item
default_choice

optional_choice
optional_choice

��

If an optional item has a default when it is not specified, the default appears above the main path.

�� required_item
default_choice

optional_choice required_choice
required_choice

optional_choice

��

v An arrow returning to the left, above the main line, indicates an item that can be repeated.

�� required_item � repeatable_item ��

If the repeat arrow contains a comma, you must separate repeated items with a comma.

�� required_item �

,

repeatable_item ��

A repeat arrow above a stack indicates that the items in the stack can be repeated.
v Keywords appear in uppercase (for example, FROM). They must be spelled exactly as shown. Variables

appear in all lowercase letters (for example, column-name). They represent user-supplied names or
values.

v If punctuation marks, parentheses, arithmetic operators, or other such symbols are shown, you must
enter them as part of the syntax.

PDF file for SQL XML programming
You can view and print a PDF file of this information.

To view or download the PDF version of this document, select SQL XML programming (about 935 KB).

Saving PDF files

To save a PDF on your workstation for viewing or printing:
1. Right-click the PDF link in your browser.
2. Click the option that saves the PDF locally.
3. Navigate to the directory in which you want to save the PDF.
4. Click Save.

Downloading Adobe Reader

You need Adobe Reader installed on your system to view or print these PDFs. You can download a free
copy from the Adobe Web site (http://get.adobe.com/reader/).

2 IBM i: SQL XML Programming

|

http://get.adobe.com/reader/

SQL statements and SQL/XML functions
Many SQL statements support the XML data type. This enables you to perform many common database
operations with XML data, such as creating tables with XML columns, adding XML columns to existing
tables, creating triggers on tables with XML columns, and inserting, updating, or deleting XML
documents. A set of SQL/XML functions, expressions, and specifications supported by DB2 database
server takes full advantage of the XML data type.

XML data type

The XML data type can store an XML value up to 2 GB. A CCSID can be specified for the XML data type.
If a CCSID is not specified, the value of the SQL_XML_DATA_CCSID QAQQINI option will be used. The
default for this option is 1208 (UTF-8). The XML data type can store single byte and Unicode double byte
characters.

A single row in a table that contains one or more XML or LOB values cannot exceed 3.5 GB. The XML
data type can be specified in a partitioned table.

XML host variables and XML locators can be declared in application programs.

XML locators can be used to refer to XML values. An XML value can be fetched into an XML locator. An
XML locator can be passed to a procedure or function. The locator can be specified as a value on an
INSERT or UPDATE statement.

Journal entries for XML columns are the same as for LOBs. See "Journal entry layout of LOB columns" in
the SQL programming topic collection.

Application development

Support for application development is provided by several programming languages, and through SQL
and external functions and procedures:

Programming language support
Application development support of XML enables applications to combine XML and relational
data access and storage. The following programming languages support the XML data type for
SQL:
v ILE RPG
v ILE COBOL
v C or C++ (embedded SQL or DB2 CLI)
v Java™ (JDBC or SQLJ)

SQL and external functions and procedures
XML data can be passed to SQL procedures and external procedures by including parameters of
data type XML in CREATE PROCEDURE parameter signatures. XML data can also be passed to
SQL functions and external functions by including parameters of data type XML in CREATE
FUNCTION parameter signatures. Existing SQL routine features support the implementation of
procedural logic flow around SQL statements that produce or make use of XML values as well as
the temporary storage of XML data values in variables.

Administration

The XML features provide a repository for managing the URI dependencies of XML documents:

XML schema repository (XSR)
The XML schema repository (XSR) is a repository for all XML artifacts required to process XML

SQL XML programming 3

|

|
|
|
|
|

|

|
|
|
|

|
|

|

|
|
|

|
|

|

|
|

|
|
|
|

|

|

|

|

|
|
|
|
|
|
|

|

|

|
|

instance documents stored in XML columns. It stores XML schemas, referenced in XML
documents. It can be used to validate or decompose XML instance documents.

Tooling

Support for the XML data type is available with the IBM i Navigator.

Annotated XML schema decomposition

The XML features enable you to store and access XML data as XML documents. There can be cases where
accessing XML data as relational data is required. Annotated XML schema decomposition decomposes
documents based on annotations specified in an XML schema.

XML input and output overview
The DB2 database server, which manages both relational and XML data, offers various methods for the
input and output of XML documents.

XML documents are stored in columns defined with the XML data type. Each row of an XML column
stores a single well-formed XML document. The stored document is kept in its XML document form.

XML columns can be defined in tables that contain columns of other types, which hold relational data,
and multiple XML columns can be defined for a single table.

Input

The method that you use to put XML data into the database system depends on the task you want to
accomplish:

Insert or update
Well-formed documents are inserted into XML columns using the SQL INSERT statement. A
document is well-formed when it can be parsed successfully. Validation of the XML documents
during an insert or update operation is optional. If validation is performed, the XML schema
must first be registered with the XML schema repository (XSR). Documents are updated using the
SQL UPDATE statement.

Annotated XML schema decomposition
Data from XML documents can be decomposed or stored into relational and XML columns using
annotated XML schema decomposition. Decomposition stores data in columns according to
annotations that are added to XML schema documents. These annotations map the data in XML
documents to columns of tables.

XML schema documents referenced by the decomposition feature are stored in the XML schema
repository (XSR).

XML schema repository (XSR) registration
The XML schema repository (XSR) stores XML schemas that are used for the validation or
decomposition of XML documents. Registration of XML schemas is usually a prerequisite for
other tasks that are performed on XML documents which have a dependency on these schemas.
XML schemas are registered with the XSR using stored procedures provided by DB2.

Output

SQL is used to retrieve the XML data from the database system.

When querying XML data using an SQL fullselect, the query occurs at the column level. For this reason,
only entire XML documents can be returned from the query. The XMLTABLE built in table function can
be used to retrieve fragments of an XML document in an SQL query.

4 IBM i: SQL XML Programming

|
|

|

|

|

|
|
|

|

|
|

|
|

|
|

|

|
|

|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|

|

|

|
|
|

A number of publishing functions are also available to construct XML values from relational data stored
in DB2 database server. XML values constructed with these publishing functions do not have to be
well-formed XML documents.

Comparison of XML and relational models
When you design your databases, you need to decide whether your data is better suited to the XML
model or the relational model. Your design can also take advantage of the nature of a DB2 database - the
ability to support both relational and XML data in a single database.

While this discussion explains some of the main differences between the models and the factors that
apply to each, there are numerous factors that can determine the most suitable choice for your
implementation. Use this discussion as a guideline to assess the factors that can impact your specific
implementation.

Major differences between XML data and relational data

XML data is hierarchical; relational data is represented in a model of logical relationships
An XML document contains information about the relationship of data items to each other in the
form of the hierarchy. With the relational model, the only types of relationships that can be
defined are parent table and dependent table relationships.

XML data is self-describing; relational data is not
An XML document contains not only the data, but also tagging for the data that explains what it
is. A single document can have different types of data. With the relational model, the content of
the data is defined by its column definition. All data in a column must have the same type of
data.

XML data has inherent ordering; relational data does not
For an XML document, the order in which data items are specified is assumed to be the order of
the data in the document. There is often no other way to specify order within the document. For
relational data, the order of the rows is not guaranteed unless you specify an ORDER BY clause
for one or more columns in a fullselect.

Factors influencing data model choice

What kind of data you store can help you determine how you store it. For example, if the data is
naturally hierarchical and self-describing, you might store it as XML data. However, there are other
factors that might influence your decision about which model to use:

When you need maximum flexibility
Relational tables follow a fairly rigid model. For example, normalizing one table into many or
denormalizing many tables into one can be very difficult. If the data design changes often,
representing it as XML data is a better choice. XML schemas can be evolved over time, for
example.

When you need maximum performance for data retrieval
Some expense is associated with serializing and interpreting XML data. If performance is more of
an issue than flexibility, relational data might be the better choice.

When data is processed later as relational data
If subsequent processing of the data depends on the data being stored in a relational database, it
might be appropriate to store parts of the data as relational, using decomposition. An example of
this situation is when online analytical processing (OLAP) is applied to the data in a data
warehouse. Also, if other processing is required on the XML document as a whole, then storing
some of the data as relational as well as storing the entire XML document might be a suitable
approach in this case.

When data components have meaning outside a hierarchy
Data might be inherently hierarchical in nature, but the child components do not need the

SQL XML programming 5

|
|
|

|

|
|
|

|
|
|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|

|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|
|

parents to provide value. For example, a purchase order might contain part numbers. The
purchase orders with the part numbers might be best represented as XML documents. However,
each part number has a part description associated with it. It might be better to include the part
descriptions in a relational table, because the relationship between the part numbers and the part
descriptions is logically independent of the purchase orders in which the part numbers are used.

When data attributes apply to all data, or to only a small subset of the data
Some sets of data have a large number of possible attributes, but only a small number of those
attributes apply to any particular data value. For example, in a retail catalog, there are many
possible data attributes, such as size, color, weight, material, style, weave, power requirements, or
fuel requirements. For any given item in the catalog, only a subset of those attributes is relevant:
power requirements are meaningful for a table saw, but not for a coat. This type of data is
difficult to represent and search with a relational model, but relatively easy to represent and
search with an XML model.

When referential integrity is required
XML columns cannot be defined as part of referential constraints. Therefore, if values in XML
documents need to participate in referential constraints, you should store the data as relational
data.

When the data needs to be updated often
You update XML data in an XML column only by replacing full documents. If you need to
frequently update small fragments of very large documents for a large number of rows, it can be
more efficient to store the data in non-XML columns. If, however, you are updating small
documents and only a few documents at a time, storing as XML can be efficient as well.

Tutorial for XML
The XML data type enables you to define table columns that store in each row a single well-formed XML
document. This tutorial demonstrates how to set up a DB2 database to store XML data and to perform
basic operations with the XML features.

After completing this tutorial, you will be able to do the following tasks:
v Creating a table that can store XML data
v Inserting XML documents into XML typed columns
v Updating XML documents stored in an XML column
v Validating XML documents against XML schemas
v Transforming with XSLT stylesheets

Preparation

The examples in the exercises should be entered at or copied and pasted into the IBM i Navigator Run
SQL Scripts tool. Using Interactive SQL will not show the XML result data as serialized data.

Exercise 1: Creating a table that can store XML data
This exercise shows how to create a table that contains an XML column.

Create a table named Customer that contains an XML column:
CREATE SCHEMA POSAMPLE;

SET CURRENT SCHEMA POSAMPLE;

CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY, Info XML);

Note that specifying a primary key is optional and not required in order to store XML.

You can also add one or more XML columns to existing tables with the ALTER TABLE SQL statement.

6 IBM i: SQL XML Programming

|
|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|

|
|
|

|

|

|

|

|

|

|

|
|

|
|

|

|
|
|
|
|

|

|

Return to the tutorial

Exercise 2: Inserting XML documents into XML typed columns
Well-formed XML documents are inserted into XML typed columns using the SQL INSERT statement.
This exercise shows you how to insert XML documents into XML columns.

Typically, XML documents are inserted using application programs. While XML data can be inserted
through applications using XML, binary, or character types, it is recommended that you use XML or
binary types if XML documents from many sources are processed with different encodings.

This exercise shows how to insert XML documents into XML typed columns manually in Run SQL
Scripts, where the XML document is always a character literal. In most cases, string data cannot be
directly assigned to a target with an XML data type; the data must first be parsed explicitly using the
XMLPARSE function. In INSERT or UPDATE operations, however, string data can be directly assigned to
XML columns without an explicit call to the XMLPARSE function. In these two cases, the string data is
implicitly parsed. Refer to the XML parsing documentation for more information.

Insert three XML documents into the Customer table that you created in Exercise 1:
INSERT INTO Customer (Cid, Info) VALUES (1000,
’<customerinfo xmlns="http://posample.org" Cid="1000">

<name>Kathy Smith</name>
<addr country="Canada">

<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E6</pcode-zip>

</addr>
<phone type="work">416-555-1358</phone>

</customerinfo>’);

INSERT INTO Customer (Cid, Info) VALUES (1002,
’<customerinfo xmlns="http://posample.org" Cid="1002">

<name>Jim Noodle</name>
<addr country="Canada">

<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>

</customerinfo>’);

INSERT INTO Customer (Cid, Info) VALUES (1003,
’<customerinfo xmlns="http://posample.org" Cid="1003">

<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</addr>
<phone type="work">905-555-2937</phone>

</customerinfo>’);

You can confirm that the records were successfully inserted as follows:
SELECT * from Customer;

If you are running this exercise in Interactive SQL, the XML values will not be serialized for you. You
must explicitly use the XMLSERIALIZE function to see the inserted data.

Return to the tutorial

SQL XML programming 7

|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

Exercise 3: Updating XML documents stored in an XML column
This exercise shows you how to update XML documents with SQL statements.

Updating with SQL

To update an XML document stored in an XML column using SQL, you must perform a full-document
update using the SQL UPDATE statement.

Update one of the documents inserted in Exercise 2 as follows (where the values of the <street>, <city>,
and <pcode-zip> elements have changed):
UPDATE customer SET info =
’<customerinfo xmlns="http://posample.org" Cid="1002">

<name>Jim Noodle</name>
<addr country="Canada">

<street>1150 Maple Drive</street>
<city>Newtown</city>
<prov-state>Ontario</prov-state>
<pcode-zip>Z9Z 2P2</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>

</customerinfo>’
WHERE Cid = 1002;

You can confirm that the XML document was updated as follows:
SELECT * from Customer;

If you are running this exercise in Interactive SQL, the XML values will not be serialized for you. You
must explicitly use the XMLSERIALIZE function to see the updated data.

The row where Cid="1002" contains the changed <street>, <city>, and <pcode-zip> values.

XML documents can be identified by values in the non-XML columns of the same table.

Return to the tutorial

Exercise 4: Validating XML documents against XML schemas
This exercise shows you how to validate XML documents. You can validate your XML documents against
XML schemas only; DTD validation is not supported. (Although you cannot validate against DTDs, you
can still insert documents that contain a DOCTYPE or that refer to DTDs.)

There are tools available, such as those in IBM Rational® Application Developer, that help you generate
XML schemas from various sources, including DTDs, existing tables, or XML documents.

Before you can validate, you must register your XML schema with the built-in XML schema repository
(XSR). This process involves registering each XML schema document that makes up the XML schema.
Once all XML schema documents have been successfully registered, you must complete the registration.

Register and complete registration of the posample.customer XML schema as follows:
CREATE PROCEDURE SAMPLE_REGISTER
LANGUAGE SQL
BEGIN

DECLARE CONTENT BLOB(1M);
VALUES BLOB(’<?xml version="1.0"?>

<xs:schema targetNamespace="http://posample.org"
xmlns:xs="http://www.w3.org/2001/XMLSchema" elementFormDefault="qualified">
<xs:element name="customerinfo">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="1" />

8 IBM i: SQL XML Programming

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|

|

|

|

|
|
|
|

|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

<xs:element name="addr" minOccurs="1" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="street" type="xs:string" minOccurs="1" />
<xs:element name="city" type="xs:string" minOccurs="1" />
<xs:element name="prov-state" type="xs:string" minOccurs="1" />
<xs:element name="pcode-zip" type="xs:string" minOccurs="1" />

</xs:sequence>
<xs:attribute name="country" type="xs:string" />

</xs:complexType>
</xs:element>
<xs:element name="phone" nillable="true" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:simpleContent>

<xs:extension base="xs:string">
<xs:attribute name="type" form="unqualified" type="xs:string" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>
<xs:element name="assistant" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="name" type="xs:string" minOccurs="0" />
<xs:element name="phone" nillable="true" minOccurs="0" maxOccurs="unbounded">

<xs:complexType>
<xs:simpleContent >

<xs:extension base="xs:string">
<xs:attribute name="type" type="xs:string" />

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:sequence>
<xs:attribute name="Cid" type="xs:integer" />

</xs:complexType>
</xs:element>

</xs:schema>’) INTO CONTENT;

CALL SYSPROC.XSR_REGISTER(’POSAMPLE’, ’CUSTOMER’, ’http://posample.org’, CONTENT, null);
END;

SET PATH POSAMPLE;

CALL SAMPLE_REGISTER;

CALL SYSPROC.XSR_COMPLETE(’POSAMPLE’, ’CUSTOMER’, null, 0);

You can verify that the XML schema was successfully registered by querying the QSYS2.XSROBJECTS
catalog view, which contains information about objects stored in the XSR. This query and its result
(formatted for clarity) are as follows:
SELECT XSROBJECTSCHEMA, XSROBJECTNAME FROM QSYS2.XSROBJECTS

WHERE XSROBJECTSCHEMA = ’POSAMPLE’;

XSROBJECTSCHEMA XSROBJECTNAME
-------------------- --------------------
POSAMPLE CUSTOMER

This XML schema is now available to be used for validation. Validation is typically performed during an
INSERT or UPDATE operation. Perform validation using the XMLVALIDATE function. The INSERT or
UPDATE operation on which XMLVALIDATE was specified, will occur only if the validation succeeds.

SQL XML programming 9

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|

|
|
|

The following INSERT statement inserts a new XML document into the Info column of the Customer
table, only if the document is valid according to the posample.customer XML schema previously
registered.
INSERT INTO Customer(Cid, Info) VALUES (1004, XMLVALIDATE (XMLPARSE (DOCUMENT
’<customerinfo xmlns="http://posample.org" Cid="1004">

<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X 7F8</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>
<phone type="home">416-555-2937</phone>
<phone type="cell">905-555-8743</phone>
<phone type="cottage">613-555-3278</phone>

</customerinfo>’ PRESERVE WHITESPACE)
ACCORDING TO XMLSCHEMA ID posample.customer));

XMLVALIDATE operates on XML data. Because the XML document in this example is passed as character
data, XMLVALIDATE must be used in conjunction with the XMLPARSE function. Note that character
data can be assigned directly to XML only in INSERT, UPDATE, or MERGE statements. Here, an INSERT
statement is used. The XMLPARSE function parses its argument as an XML document and returns an
XML value.

To verify that the validation and insert were successful, query the Info column:
SELECT Info FROM Customer;

This query should return three XML documents, one of which is the document just inserted.

Return to the tutorial

Exercise 5: Transforming with XSLT stylesheets
You can use the XSLTRANSFORM function to convert XML data within the database into other formats.

This example illustrates how to use the XSLTRANSFORM built-in function to transform XML documents
that are stored in the database. In this case the XML document contains an arbitrary number of university
student records. Each student element contains a student's ID, first name, last name, age, and the
university he is attending, as follows:
<?xml version="1.0"?>
<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<student studentID="1" firstName="Steffen" lastName="Siegmund"
age="23" university="Rostock"/>

</students>

The intent of the XSLT transformation is to extract the information in the XML records and create an
HTML web page that can be viewed in a browser. For that purpose we will use the following XSLT
stylesheet, which is also stored in the database.
<?xml version="1.0" ?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="headline"/>
<xsl:param name="showUniversity"/>
<xsl:template match="students">

<html>
<head/>
<body>
<h1><xsl:value-of select="$headline"/></h1>
<table border="1">
<th>

10 IBM i: SQL XML Programming

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|

|

|

|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
<xsl:choose>

<xsl:when test="$showUniversity =’’true’’">
<td width="200">University</td>

</xsl:when>
</xsl:choose>
</tr>
</th>
<xsl:apply-templates/>
</table>
</body>
</html>
</xsl:template>

<xsl:template match="student">
<tr>
<td><xsl:value-of select="@studentID"/></td>
<td><xsl:value-of select="@firstName"/></td>
<td><xsl:value-of select="@lastName"/></td>
<td><xsl:value-of select="@age"/></td>
<xsl:choose>

<xsl:when test="$showUniversity = ’’true’’ ">
<td><xsl:value-of select="@university"/></td>

</xsl:when>
</xsl:choose>
</tr>

</xsl:template>
</xsl:stylesheet>

This stylesheet will work both with a standard XSLT transform, and using a supplied parameter file to
control its behavior at runtime.
1. Create the table into which you can store your XML document and stylesheet document.

SET CURRENT SCHEMA USER;

CREATE TABLE XML_TAB (DOCID INTEGER, XML_DOC XML, XSL_DOC CLOB(1M));

2. Insert your documents into the tables. In this example the XML document and XSLT stylesheet can be
loaded into the same table as separate column values. The INSERT statement uses a truncated version
of the XSLT stylesheet as the third value. To use the following INSERT statement, replace the
truncated stylesheet value with the XSLT stylesheet listed previously in this exercise.
INSERT INTO XML_TAB VALUES

(1,
’<?xml version="1.0"?>
<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<student studentID="1" firstName="Steffen" lastName="Siegmund"
age="23" university="Rostock"/>

</students>’,

’<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

...
</xsl:stylesheet>’

);

3. Call the XSLTRANSFORM built-in function to transform the XML document.
SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The output of this process will be the following HTML file:
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>

SQL XML programming 11

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|

<body>
<h1></h1>
<table border="1">
<th>
<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
</tr>
</th>
<tr>
<td>1</td>
<td>Steffen</td><td>Siegmund</td>
<td>23</td>
</tr>
</table>
</body>
</html>

While this is straightforward, there may be occasions when you want to alter the behavior of the XSLT
stylesheet at runtime, either to add information not contained in the XML records or to change the nature
of the output itself (to XHTML instead of standard HTML, for instance). You can pass parameters to the
XSLT process at runtime by using a separate parameter file. The parameter file is itself an XML document
and contains param statements that correspond to similar statements in the XSLT stylesheet file.

For instance, two parameters are defined in the stylesheet above as follows:
<xsl:param name="showUniversity"/>
<xsl:param name="headline"/>

These parameters were not used in the first transform as described above. To see how parameter-passing
works, create a parameter file as follows:
CREATE TABLE PARAM_TAB (DOCID INTEGER, PARAM VARCHAR(1000));

INSERT INTO PARAM_TAB VALUES
(1,
’<?xml version="1.0"?>
<params xmlns="http://www.ibm.com/XSLTransformParameters">

<param name="showUniversity" value="true"/>
<param name="headline">The student list ...</param>

</params>’
);

Examine this query:
SELECT XSLTRANSFORM (

XML_DOC USING XSL_DOC WITH PARAM AS CLOB(1M)) FROM XML_TAB X, PARAM_TAB P
WHERE X.DOCID=P.DOCID;

The above query generates the following HTML:
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1>The student’s list ...</h1>
<table border="1">
<th>
<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
<td width="200">University</td>

12 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

</tr>
</th>
<tr>
<td>1</td>
<td>Steffen</td>
<td>Siegmund</td><td>23</td><td>Rostock</td>
</tr>
</table>
</body>
</html>

Return to the tutorial

Inserting XML data
Before you can insert XML documents, you must create a table that contains an XML column, or add an
XML column to an existing table.

Addition of XML columns to existing tables
To add XML columns to existing tables, you specify columns with the XML data type in the ALTER
TABLE statement with the ADD clause. A table can have one or more XML columns.

Example The sample database contains a table for customer data that contains two XML columns. The
definition looks like this:
CREATE TABLE Customer (Cid BIGINT NOT NULL PRIMARY KEY,

Info XML,
History XML);

Create a table named MyCustomer that is a copy of Customer, and add an XML column to describe
customer preferences:
SET CURRENT SCHEMA USER;

CREATE TABLE MyCustomer LIKE Customer;
ALTER TABLE MyCustomer ADD COLUMN Preferences XML;

Insertion into XML columns
To insert data into an XML column, use the SQL INSERT statement. The input to the XML column must
be a well-formed XML document, as defined in the XML 1.0 specification. The application data type can
be an XML, character, or binary type.

You should insert XML data from host variables, rather than literals, so that the DB2 database server can
use the host variable data type to determine some of the encoding information.

XML data in an application is in its serialized string format. When you insert the data into an XML
column, it must be converted to the stored XML document format. If the application data type is an XML
data type, the DB2 database server performs this operation implicitly. If the application data type is not
an XML type, you can invoke the XMLPARSE function explicitly when you perform the insert operation,
to convert the data from its serialized string format to the XML document format.

During document insertion, you might also want to validate the XML document against a registered XML
schema. You can do that with the XMLVALIDATE function.

The following examples demonstrate how XML data can be inserted into XML columns. The examples
use table MyCustomer, which is a copy of the sample Customer table. The XML data that is to be
inserted is in file c6.xml, and looks like this:
<customerinfo xmlns="http://posample.org" Cid="1015">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>
<city>Toronto</city>

SQL XML programming 13

|
|
|
|
|
|
|
|
|
|

|

|

|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

|
|

|
|
|

|
|
|
|
|

<prov-state>Ontario</prov-state>
<pcode-zip>N8X-7F8</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c6.xml as binary data, and insert the data into
an XML column:
PreparedStatement insertStmt = null;
String sqls = null;
int cid = 1015;
sqls = "INSERT INTO MyCustomer (Cid, Info) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File("c6.xml");
insertStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
insertStmt.executeUpdate();

Example: In a static embedded C application, insert data from a binary XML host variable into an XML
column:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;
...
cid=1015;
/* Read data from file c6.xml into xml_hostvar */
...
EXEC SQL INSERT INTO MyCustomer (Cid,Info) VALUES (:cid, :xml_hostvar);

XML parsing
XML parsing is the process of converting XML data from its serialized string format to its XML document
format.

You can let the DB2 database server perform parsing implicitly, or you can perform XML parsing
explicitly.

Implicit XML parsing occurs in the following cases:
v When you pass data to the database server using a host variable of type XML, or use a parameter

marker of type XML
The database server does the parsing when it binds the value for the host variable or parameter
marker for use in statement processing.
You must use implicit parsing in this case.

v When you assign a host variable, parameter marker, or SQL expression with a string data type
(character, graphic, or binary) to an XML column in an INSERT, UPDATE, or MERGE statement. The
implicit parsing occurs when the statement is executed.

You perform explicit XML parsing when you invoke the XMLPARSE function on the input XML data. You
can use the result of XMLPARSE in any context that accepts an XML data type. For example, you can
assign the result to an XML column or use it as a stored procedure parameter of type XML.

The XMLPARSE function takes a non-XML character, binary, or Unicode graphic data type as input. For
embedded dynamic SQL applications, you need to cast the parameter marker that represents the input
document for XMLPARSE to the appropriate data type. For example:
INSERT INTO MyCustomer (Cid, Info)
VALUES (?, XMLPARSE(DOCUMENT CAST(? AS CLOB(1K)) PRESERVE WHITESPACE))

14 IBM i: SQL XML Programming

|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|

|

|
|

|
|

|

|
|
|

|
|
|

|
|
|

|
|

For static embedded SQL applications, a host variable argument of the XMLPARSE function cannot be
declared as an XML type (XML AS BLOB, XML AS CLOB, or XML AS DBCLOB type).

XML parsing and whitespace handling

During implicit or explicit XML parsing, you can control the preservation or stripping of boundary
whitespace characters when you store the data in the database.

According to the XML standard, whitespace is space characters (U+0020), carriage returns (U+000D), line
feeds (U+000A), or tabs (U+0009) that are in the document to improve readability. When any of these
characters appear as part of a text string, they are not considered to be whitespace.

Boundary whitespace is whitespace characters that appear between elements. For example, in the following
document, the spaces between <a> and and between and are boundary whitespace.
<a> and between

With explicit invocation of XMLPARSE, you use the STRIP WHITESPACE or PRESERVE WHITESPACE
option to control preservation of boundary whitespace. The default is stripping of boundary whitespace.

With implicit XML parsing:
v If the input data type is not an XML type or is not cast to an XML data type, the DB2 database server

always strips whitespace.
v If the input data type is an XML data type, you can use the CURRENT IMPLICIT XMLPARSE OPTION

special register to control preservation of boundary whitespace. You can set this special register to
STRIP WHITESPACE or PRESERVE WHITESPACE. The default is stripping of boundary whitespace.

If you use XML validation, the DB2 database server ignores the CURRENT IMPLICIT XMLPARSE
OPTION special register and uses only the validation rules to determine stripping or preservation of
whitespace in the following cases:
xmlvalidate(? ACCORDING TO XMLSCHEMA ID schemaname)
xmlvalidate(?)
xmlvalidate(:hvxml ACCORDING TO XMLSCHEMA ID schemaname)
xmlvalidate(:hvxml)
xmlvalidate(cast(? as xml) ACCORDING TO XMLSCHEMA ID schemaname)
xmlvalidate(cast(? as xml))

In these cases, ? represents XML data, and :hvxml is an XML host variable.

The XML standard specifies an xml:space attribute that controls the stripping or preservation of
whitespace within XML data. xml:space attributes override any whitespace settings for implicit or explicit
XML parsing.

For example, in the following document, the spaces immediately before and after are always
preserved, regardless of any XML parsing options, because the spaces are contained within an element
which is defined with the attribute xml:space="preserve":
<a xml:space="preserve"> <c>c</c>b

However, in the following document, the spaces immediately before and after can be controlled by
the XML parsing options, because the spaces are contained within an element which is defined with the
attribute xml:space="default":
<a xml:space="default"> <c>c</c>b

SQL XML programming 15

|
|

|

|
|

|
|
|

|
|

|

|
|

|

|
|

|
|
|

|
|
|

|
|
|
|
|
|

|

|
|
|

|
|
|

|

|
|
|

|

SQL/XML publishing functions for constructing XML values
You can construct XML values, which do not necessarily have to be well-formed XML documents, by
combining those publishing functions that correspond to the components you want in the resulting XML
value. The functions must be specified in the order that you want the results to appear.

Values constructed using the SQL/XML publishing functions are returned as XML. Depending on what
you want to do with the XML value, you might need to explicitly serialize the value to convert it to
another SQL data type. Refer to the documentation on XML serialization for details.

The following SQL/XML publishing functions can be used to construct XML values.

XMLAGG aggregate function
Returns an XML sequence containing an item for each non-null value in a set of XML values.

XMLATTRIBUTES scalar function
Constructs XML attributes from the arguments. This function can be used only as an argument of
the XMLELEMENT function.

XMLCOMMENT scalar function
Returns an XML value with the input argument as the content.

XMLCONCAT scalar function
Returns a sequence containing the concatenation of a variable number of XML input arguments.

XMLDOCUMENT scalar function
Returns an XML value that is a well-formed XML document. Every XML value that is stored in a
DB2 table must be a document. This function forms an XML document from the XML value.

XMLELEMENT scalar function
Returns an XML value that is an XML element. Every XML value that is stored in a DB2 table
must be a document. The XMLELEMENT function does not create a document, only an element.
The stored XML value must be a document formed by the XMLDOCUMENT function.

XMLFOREST scalar function
Returns an XML value that is a sequence of XML elements.

XMLGROUP aggregate function
Returns a single top-level element to represent a table or the result of a query. By default each
row in the result set is mapped to a row subelement and each input expression is mapped to a
subelement of the row subelement. Optionally, each row in the result can be mapped to a row
subelement and each input expression to be mapped to an attribute of the row subelement.

XMLNAMESPACES declaration
Constructs namespace declarations from the arguments. This declaration can be used only as an
argument of the XMLELEMENT and XMLFOREST functions.

XMLPI scalar function
Returns an XML value with a single processing instruction.

XMLROW scalar function
Returns a sequence of row elements to represent a table or the result of a query. By default each
input expression is transformed into a subelement of a row element. Optionally, each input
expression can be transformed into an attribute of a row element.

XMLTEXT scalar function
Returns an XML value that contains the value of the input argument.

XSLTRANSFORM scalar function
Converts XML data into other formats, including other XML schemas.

16 IBM i: SQL XML Programming

|

|
|
|

|
|
|

|

|
|

|
|
|

|
|

|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|

|
|
|

|
|

|
|
|
|

|
|

|
|

Example: Construct an XML document with values from a single table
This example shows how you can construct XML values suitable for publishing from a single table with
SQL/XML publishing functions.

This example shows how an XML document can be constructed from values stored in a single table. In
the following query:
v Each <item> element is constructed with values from the NAME column of the PRODUCT table, using

the XMLELEMENT function.
v All <item> elements are then aggregated, using XMLAGG, within the constructed <allProducts>

element.
v A namespace is added to the <allProducts> element, with the XMLNAMESPACES function.
SELECT XMLELEMENT (NAME "allProducts",

XMLNAMESPACES (DEFAULT ’http://posample.org’),
XMLAGG(XMLELEMENT (NAME "item", p.name)))

FROM Product p

This query returns the following XML value. It is formatted here to improve readability.
<allProducts xmlns="http://posample.org">

<item>Snow Shovel, Basic 22 inch</item>
<item>Snow Shovel, Deluxe 24 inch</item>
<item>Snow Shovel, Super Deluxe 26 inch</item>
<item>Ice Scraper, Windshield 4 inch</item>

</allProducts>

You can construct a similar XML document that contains a sequence of row elements by using the
XMLROW function instead of aggregating the elements with XMLAGG. Item elements are also given a
namespace prefix:
SELECT XMLELEMENT (NAME "products",

XMLNAMESPACES (’http://posample.org’ AS "po"),
XMLROW(NAME AS "po:item"))

FROM Product

The resulting output is as follows:
<products xmlns:po="http://posample.org">

<row>
<po:item>Snow Shovel, Basic 22 inch</po:item>

</row>
</products>
<products xmlns:po="http://posample.org">

<row>
<po:item>Snow Shovel, Deluxe 24 inch</po:item>

</row>
</products>
<products xmlns:po="http://posample.org">

<row><po:item>Snow Shovel, Super Deluxe 26 inch</po:item>
</row>

</products>
<products xmlns:po="http://posample.org">

<row><po:item>Ice Scraper, Windshield 4 inch</po:item>
</row>

</products>

Example: Construct an XML document with values from multiple tables
This example shows how you can construct XML values suitable for publishing from multiple tables with
SQL/XML publishing functions.

This example shows how an XML document can be constructed from values stored in multiple tables. In
the following query:

SQL XML programming 17

|
|
|

|
|

|
|

|
|

|

|
|
|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

v <prod> elements are constructed from a forest of elements, which are called name and numInStock,
using the XMLFOREST function. This forest is built with values from the NAME column in the
PRODUCT table and the QUANTITY column in the INVENTORY table.

v All <prod> elements are then aggregated within the constructed <saleProducts> element.
SELECT XMLELEMENT (NAME "saleProducts",

XMLNAMESPACES (DEFAULT ’http://posample.org’),
XMLAGG (XMLELEMENT (NAME "prod",

XMLATTRIBUTES (p.Pid AS "id"),
XMLFOREST (p.name AS "name",

i.quantity AS "numInStock"))))
FROM PRODUCT p, INVENTORY i
WHERE p.Pid = i.Pid

The previous query yields the following XML document:
<saleProducts xmlns="http://posample.org">

<prod id="100-100-01">
<name>Snow Shovel, Basic 22 inch</name>
<numInStock>5</numInStock>

</prod>
<prod id="100-101-01">

<name>Snow Shovel, Deluxe 24 inch</name>
<numInStock>25</numInStock>

</prod>
<prod id="100-103-01">

<name>Snow Shovel, Super Deluxe 26 inch</name>
<numInStock>55</numInStock>

</prod>
<prod id="100-201-01">

<name>Ice Scraper, Windshield 4 inch</name>
<numInStock>99</numInStock>

</prod>
</saleProducts>

Example: Construct an XML document with values from table rows that contain
null elements
This example shows how you can construct XML values suitable for publishing from table rows that
contain null elements with SQL/XML publishing functions.

When an XML value is constructed using XMLELEMENT or XMLFOREST, it is possible that a null value
is encountered when determining the element's content. The EMPTY ON NULL and NULL ON NULL
options of XMLELEMENT and XMLFOREST allow you to specify whether an empty element or no
element is generated when an element's content is null. The default null handling for XMLELEMENT is
EMPTY ON NULL. The default null handling for XMLFOREST is NULL ON NULL.

This example assumes that the LOCATION column of the INVENTORY table contains a null value in one
row. The following query therefore does not return the <loc> element, because XMLFOREST treats nulls
as null by default:
SELECT XMLELEMENT (NAME "newElem",

XMLATTRIBUTES (PID AS "prodID"),
XMLFOREST (QUANTITY AS "quantity",

LOCATION AS "loc"))
FROM INVENTORY

In the result value, there is no <loc> element for the row that contains the null value.
<newElem prodID="100-100-01">

<quantity>5</quantity>
</newElem>

The same query, with the EMPTY ON NULL option specified, returns an empty <loc> element:

18 IBM i: SQL XML Programming

|
|
|

|

|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|

|
|
|

|

SELECT XMLELEMENT (NAME "newElem",
XMLATTRIBUTES (PID AS "prodID"),
XMLFOREST (QUANTITY AS "quantity",

LOCATION AS "loc" OPTION EMPTY ON NULL))
FROM INVENTORY

In the result value, there is an empty <loc> element.
<newElem prodID="100-100-01">

<quantity>5</quantity>
<loc/>

</newElem>

Example: Transforming with XSLT stylesheets
The standard way to transform XML data into other formats is by Extensible Stylesheet Language
Transformations (XSLT). You can use the built-in XSLTRANSFORM function to convert XML documents
into HTML, plain text, or different XML schemas.

XSLT uses stylesheets to convert XML into other data formats. You can convert part or all of an XML
document and select or rearrange the data using the XPath query language and the built-in functions of
XSLT. XSLT is commonly used to convert XML to HTML, but can also be used to transform XML
documents that comply with one XML schema into documents that comply with another schema. XSLT
can also be used to convert XML data into unrelated formats, like comma-delimited text or formatting
languages such as troff. XSLT has two main areas of applicability:
v Formatting (conversion of XML into HTML)
v Data exchange (querying, reorganizing and converting data from one XML schema to another, or into a

data exchange format such as SOAP)

Both cases may require that an entire XML document or only selected parts of it be transformed. XSLT
incorporates the XPath specification, permitting query and retrieval of arbitrary data from the source
XML document. An XSLT template may also contain or create additional information such as file headers
and instruction blocks that will be added to the output file.

How XSLT Works

XSLT stylesheets are written in Extensible Stylesheet Language (XSL), an XML schema. XSL is a template
language rather than an algorithmic language such as C or Perl, a feature that limits XSL's power but
makes it uniquely suited to its purpose. XSL stylesheets contain one or more template elements, which
describe what action to take when a given XML element or query is encountered in the target file. A
typical XSLT template element will start by specifying which element it applies to. For instance,
<xsl:template match="product">

declares that the contents of this template will be used to replace the content of any <product> tag
encountered in the target XML file. An XSLT file consists of a list of such templates, in no necessary
order.

The following example shows typical elements of an XSLT template. In this case the target will be XML
documents containing inventory information, such as this record describing an ice scraper:
<?xml version="1.0"?>
<product pid="100-201-01">

<description>
<name>Ice Scraper, Windshield 4 inch</name>
<details>Basic Ice Scraper 4 inches wide, foam handle</details>
<price>3.99</price>

</description>
</product>

SQL XML programming 19

|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

|
|

|
|
|
|

|

|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|

This record includes such information as the part number, description, and price of a windshield ice
scraper. Some of this information is contained within elements, such as <name>. Some, like the part
number, are contained in attributes (in this case the pid attribute of the <product> element). To display
this information as a web page, you could apply the following XSLT template:
<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:output method="html"/>

<xsl:template match="/">
<html>

<body>
<h1><xsl:value-of select="/product/description/name"/></h1>
<table border="1">

<th>
<xsl:apply-templates select="product"/>

</th>
</table>

</body>
</html>

</xsl:template>
<xsl:template match="product">

<tr>
<td width="80">product ID</td>
<td><xsl:value-of select="@pid"/></td>

</tr>
<tr>

<td width="200">product name</td>
<td><xsl:value-of select="/product/description/name"/></td>

</tr>
<tr>

<td width="200">price</td>
<td>$<xsl:value-of select="/product/description/price"/></td>

</tr>
<tr>

<td width="50">details</td>
<td><xsl:value-of select="/product/description/details"/></td>

</tr>
</xsl:template>

</xsl:stylesheet>

When an XSLT processor receives as input both the template and target documents above, it will output
the following HTML document:
<html>
<body>
<h1>Ice Scraper, Windshield 4 inch</h1>
<table border="1">
<th>
<tr>
<td width="80">product ID</td><td>100-201-01</td>
</tr>
<tr>
<td width="200">product name</td><td>Ice Scraper, Windshield 4 inch</td>
</tr>
<tr>
<td width="200">price</td><td>$3.99</td>
</tr>
<tr>
<td width="50">details</td><td>Basic Ice Scraper 4 inches wide, foam handle</td>
</tr>
</th>
</table>
</body>
</html>

20 IBM i: SQL XML Programming

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

The XSLT processor tests the incoming XML document for given conditions (typically one condition per
template). If a condition is true the template contents are inserted into the output, and if they are false
the template is passed over by the processor. The stylesheet may add its own data to the output, for
example in the HTML table tagging and strings such as "product ID."

XPath can be used both to define template conditions, as in <xsl:template match="product"> and to
select and insert data from anywhere in the XML stream, as in <h1><xsl:value-of select="/product/
description/name"/></h1>.

Using XSLTRANSFORM

You can use the XSLTRANSFORM function to apply XSLT stylesheets to XML data. If you supply the
function with the name of an XML document and an XSLT stylesheet, the function will apply the
stylesheet to the document and return the result.

Example: Using XSLT as a formatting engine
The following example illustrates how to use the built-in XSLTRANSFORM function as a formatting
engine.

To get set up, first insert the two example documents below into the database.
INSERT INTO XML_TAB VALUES
(1,

’<?xml version="1.0"?>
<students xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation = "/home/steffen/xsd/xslt.xsd">
<student studentID="1" firstName="Steffen" lastName="Siegmund"

age="23" university="Rostock"/>
</students>’,

’<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="headline"/>
<xsl:param name="showUniversity"/>
<xsl:template match="students">

<html>
<head/>

<body>
<h1><xsl:value-of select="$headline"/></h1>
<table border="1">

<th>
<tr>

<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
<xsl:choose>

<xsl:when test="$showUniversity =’true’">
<td width="200">University</td>
</xsl:when>

</xsl:choose>
</tr>

</th>
<xsl:apply-templates/>

</table>
</body>
</html>

</xsl:template>
<xsl:template match="student">

<tr>
<td><xsl:value-of select="@studentID"/></td>
<td><xsl:value-of select="@firstName"/></td>
<td><xsl:value-of select="@lastName"/></td>

SQL XML programming 21

|
|
|
|

|
|
|

|

|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<td><xsl:value-of select="@age"/></td>
<xsl:choose>

<xsl:when test="$showUniversity = ’true’ ">
<td><xsl:value-of select="@university"/></td>

</xsl:when>
</xsl:choose>

</tr>
</xsl:template>

</xsl:stylesheet>’
);

Next, call the XSLTRANSFORM function to convert the XML data into HTML and display it.
SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC AS CLOB(1M)) FROM XML_TAB;

The result is this document:
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1></h1>
<table border="1">
<th>
<tr>
<td width="80">StudentID</td>
<td width="200">First Name</td>
<td width="200">Last Name</td>
<td width="50">Age</td>
</tr>
</th>
<tr>

<td>1</td>
<td>Steffen</td><td>Siegmund</td>
<td>23</td>
</tr>

</table>
</body>
</html>

In this example, the output is HTML and the parameters influence only what HTML is produced and
what data is brought over to it. As such it illustrates the use of XSLT as a formatting engine for end-user
output.

Example: Using XSLT for data exchange
This example illustrates how to use the built-in XSLTRANSFORM function to convert XML documents
for data exchange.

This example uses parameters with the stylesheet to produce different data exchange formats at runtime.

We use a stylesheet that incorporates xsl:param elements to capture data from a parameter file.
INSERT INTO Display_productdetails values(1, ’<?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:param name="headline"/>
<xsl:param name="supermarketname"/>
<xsl:template match="product">

<html>
<head/>

<body>
<h1><xsl:value-of select="$headline"/></h1>
<table border="1">

<th>
<tr>

22 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

<td width="80">product ID</td>
<td width="200">product name</td>
<td width="200">price</td>
<td width="50">details</td>
<xsl:choose>

<xsl:when test="$supermarket =’’true’’ ">
<td width="200">BIG BAZAAR super market</td>
</xsl:when>

</xsl:choose>
</tr>
</th>
<xsl:apply-templates/>

</table>
</body>
</html>

</xsl:template>
<xsl:template match="product">

<tr>
<td><xsl:value-of select="@pid"/></td>
<td><xsl:value-of select="/product/description/name"/></td>
<td><xsl:value-of select="/product/description/price"/></td>
<td><xsl:value-of select="/product/description/details"/></td>
</tr>

</xsl:template>
</xsl:stylesheet>’

);

The parameter file contains parameters corresponding to the ones in the XSLT template, with content:
CREATE TABLE PARAM_TAB (DOCID INTEGER, PARAM VARCHAR (10K));

INSERT INTO PARAM_TAB VALUES
(1,
’<?xml version="1.0"?>
<params xmlns="http://www.ibm.com/XSLTransformParameters">

<param name="supermarketname" value="true"/>
<param name="headline">BIG BAZAAR super market</param>

</params>’
);

You can then apply the parameter file at runtime using the following command:
SELECT XSLTRANSFORM (XML_DOC USING XSL_DOC WITH PARAM AS CLOB (1M))

FROM product_details X, PARM_TAB P WHERE X.DOCID=P.DOCID;

The result is HTML, but with content determined by the parameter file and tests done against the content
of the XML document:
<html>
<head>
<META http-equiv="Content-Type" content="text/html; charset=UTF-8">
</head>
<body>
<h1></h1>
<table border="1">
<th>
<tr>
<td width="80">product ID</td>
<td width="200">product Name</td>
<td width="200">price</td>
<td width="50">Details</td>
</tr>
</th>
</table>
</body>
</html>

SQL XML programming 23

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In other applications, the output of XSLTRANSFORM might not be HTML but rather another XML
document or a file using a different data format, such as an EDI file.

For data exchange applications, the parameter file could contain EDI or SOAP file header information
such as e-mail or port addresses, or other critical data unique to a particular transaction. Since the XML
used in the above examples is an inventory record, it is easy to imagine using XSLT to repackage this
record for exchange with a client's purchasing system.

Example: Using XSLT to remove namespaces
XML documents you receive might contain unneeded or incorrect namespace information. You can use
XSLT style sheets to remove or manipulate the namespace information in the documents.

The following examples show how to use XSLT to remove namespace information from an XML
document. The examples store the XML document and the XSLT stylesheets in XML columns and use the
XSLTRANSFORM function to convert the XML document using one of the XSLT stylesheets.

The following CREATE statements create the tables XMLDATA and XMLTRANS. XMLDATA contains a
sample XML document, and XMLTRANS contains XSLT stylesheets.
CREATE TABLE XMLDATA (ID BIGINT NOT NULL PRIMARY KEY, XMLDOC XML);
CREATE TABLE XMLTRANS (XSLID BIGINT NOT NULL PRIMARY KEY, XSLT XML);

Add the sample XML document to the XMLDATA table using the following INSERT statement.
insert into XMLDATA (ID, XMLDOC) values (1, ’
<newinfo xmlns="http://mycompany.com">
<!-- merged customer information -->

<customerinfo xmlns="http://oldcompany.com" xmlns:d="http://test" Cid="1004">
<name>Matt Foreman</name>

<addr country="Canada">
<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>

</addr >
<phone type="work" >905-555-4789</phone>
<h:phone xmlns:h="http://test1" type="home">416-555-3376</h:phone>
<d:assistant>

<name>Gopher Runner</name>
<h:phone xmlns:h="http://test1" type="home">416-555-3426</h:phone>

</d:assistant>
</customerinfo>

</newinfo>
’);

Example XSLT stylesheet that removes all namespaces

The following example uses an XSLT stylesheet to remove all namespace information from the XML
document stored in the table XMLDATA. The examples stores the stylesheet in the table XMLTRANS and
uses a SELECT statement to apply the stylesheet to the XML document.

Add the stylesheet to the XMLTRANS table using the INSERT statement.
insert into XMLTRANS (XSLID, XSLT) values (1, ’
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>

<!-- keep comments -->
<xsl:template match="comment()">

<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>
</xsl:template>

24 IBM i: SQL XML Programming

|
|

|
|
|
|

|
|
|

|
|
|

|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|

<xsl:template match="*">
<!-- remove element prefix -->
<xsl:element name="{local-name()}">

<!-- process attributes -->
<xsl:for-each select="@*">

<!-- remove attribute prefix -->
<xsl:attribute name="{local-name()}">

<xsl:value-of select="."/>
</xsl:attribute>

</xsl:for-each>
<xsl:apply-templates/>

</xsl:element>
</xsl:template>

</xsl:stylesheet>
’) ;

The following SELECT statement converts the sample XML document using the XSLT stylesheet.
SELECT XSLTRANSFORM (XMLDOC USING XSLT)

FROM XMLDATA, XMLTRANS
where ID = 1 and XSLID = 1

The XSLTRANSFORM command converts the XML document using the first XSLT stylesheet and returns
the following XML with all the namespace information removed.
<?xml version="1.0" encoding="UTF-8"?>
<newinfo>
<!-- merged customer information -->
<customerinfo Cid="1004">
<name>Matt Foreman</name>
<addr country="Canada">
<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>
</addr>
<phone type="work">905-555-4789</phone>
<phone type="home">416-555-3376</phone>
<assistant>
<name>Gopher Runner</name>
<phone type="home">416-555-3426</phone>
</assistant>
</customerinfo>
</newinfo>

Example XSLT stylesheet that keeps the namespace binding for an element

The following example uses an XSLT stylesheet keeps the namespace binding for only the phone
elements. The name of the element is specified in the XSLT variable mynode. The example stores the
stylesheet in the table XMLTRANS and uses a SELECT statement to apply the stylesheet to the XML
document.

Add the stylesheet to the XMLTRANS table using the following INSERT statement.
insert into XMLTRANS (XSLID, XSLT) values (2, ’
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:output method="xml" version="1.0" encoding="UTF-8" indent="yes"/>
<xsl:variable name ="mynode">phone</xsl:variable>

<!-- keep comments -->
<xsl:template match="comment()">

<xsl:copy>
<xsl:apply-templates/>

</xsl:copy>
</xsl:template>

SQL XML programming 25

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|

<xsl:template xmlns:d="http://test" xmlns:h="http://test1" match="*">
<xsl:choose>

<!-- keep namespace prefix for node names $mynode -->
<xsl:when test="local-name() = $mynode " >
<xsl:element name="{name()}">

<!-- process node attributes -->
<xsl:for-each select="@*">
<!-- remove attribute prefix -->

<xsl:attribute name="{local-name()}">
<xsl:value-of select="."/>

</xsl:attribute>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:element>
</xsl:when>

<!-- remove namespace prefix from node -->
<xsl:otherwise>
<xsl:element name="{local-name()}">

<!-- process node attributes -->
<xsl:for-each select="@*">
<!-- remove attribute prefix -->

<xsl:attribute name="{local-name()}">
<xsl:value-of select="."/>

</xsl:attribute>
</xsl:for-each>
<xsl:apply-templates/>
</xsl:element>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

</xsl:stylesheet>
’);

The following SELECT statement converts the sample XML document using the second XSLT stylesheet
since XSLID = 2 is specified.
SELECT XSLTRANSFORM (XMLDOC USING XSLT)

FROM XMLDATA, XMLTRANS
where ID = 1 and XSLID = 2 ;

The XSLTRANSFORM command converts the XML document using the second XSLT stylesheet and
returns the following XML with the namespaces for only the phone elements.
<?xml version="1.0" encoding="UTF-8"?>
<newinfo>
<!-- merged customer information -->
<customerinfo Cid="1004">
<name>Matt Foreman</name>
<addr country="Canada">
<street>1596 Baseline</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M3Z 5H9</pcode-zip>
</addr>
<phone type="work">905-555-4789</phone>
<h:phone xmlns:h="http://test1" type="home">
416-555-3376
</h:phone>
<assistant>
<name>Gopher Runner</name>
<h:phone xmlns:h="http://test1" type="home">
416-555-3426

26 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</h:phone>
</assistant>
</customerinfo>
</newinfo>

Important considerations for transforming XML documents
When using the built-in XSLTRANSFORM function to convert XML documents some important
considerations and restrictions apply.

Note the following when transforming XML documents:
v Source XML documents must be single-rooted and well-formed.
v Because XSLT transformation by default produces UTF-8 characters, the output stream might lose

characters if inserted into a character column that is not Unicode.

Restrictions
v Only the W3C XSLT Version 1.10 Recommendation is supported.
v All parameters and the result type must be SQL types; they cannot be file names.
v Transformation with more than one stylesheet document (using an xsl:include declaration) is not

supported.

Special character handling in SQL/XML publishing functions
SQL/XML publishing functions have a default behavior for handling special characters.

SQL values to XML values

Certain characters are considered special characters within XML documents, and must appear in their
escaped format, using their entity representation. These special characters are as follows:

Table 1. Special characters and their entity representations

Special character Entity representation

< <

> >

& &

" "

When publishing SQL values as XML values using the SQL/XML publishing functions, these special
characters are escaped and replaced with their predefined entities.

SQL identifiers and QNames

When publishing or constructing XML values from SQL values, it can be necessary to map an SQL
identifier to an XML qualified name, or QName. The set of characters that are allowed in delimited SQL
identifiers differs, however, from those permitted in a QName. This difference means that some
characters used in SQL identifiers will not be valid in QNames. These characters are therefore substituted
with their entity representation in the QName.

For example, consider the delimited SQL identifier "phone@work". Because the @ character is not a valid
character in a QName, the character is escaped, and the QName becomes: phone@work.

Note that this default escape behavior applies only to column names. For SQL identifiers that are
provided as the element name in XMLELEMENT, or as a name in the AS clause of XMLFOREST and
XMLATTRIBUTES, there are no escape defaults. You must provide valid QNames in these cases. Refer to
the W3C XML namespace specifications for more details on valid names.

SQL XML programming 27

|
|
|
|

|
|
|

|

|

|
|

|

|

|

|
|

|
|

|

|
|

||

||

||

||

||

||
|

|
|

|

|
|
|
|
|

|
|

|
|
|
|

http://www.w3.org/TR/REC-xml-names/

XML serialization
XML serialization is the process of converting XML data from the format that it has in a DB2 database, to
the serialized string format that it has in an application.

You can let the DB2 database manager perform serialization implicitly, or you can invoke the
XMLSERIALIZE function to explicitly request XML serialization. The most common usage of XML
serialization is when XML data is sent from the database server to the client.

Implicit serialization is the preferred method in most cases because it is simpler to code, and sending
XML data to the client allows the DB2 client to handle the XML data properly. Explicit serialization
requires additional handling, as described below, which is automatically handled by the client during
implicit serialization.

In general, implicit serialization is preferable because it is more efficient to send data to the client as XML
data. However, under certain circumstances (described later), it is better to do an explicit
XMLSERIALIZE.

The best data type to which to convert XML data is the BLOB data type, because retrieval of binary data
results in fewer encoding issues.

Implicit XML serialization

With implicit serialization for DB2 CLI and embedded SQL applications, the DB2 database server adds an
XML declaration with the appropriate encoding specified to the data. For .NET applications, the DB2
database server also adds an XML declaration. For Java applications, depending on the SQLXML object
methods that are called to retrieve the data from the SQLXML object, the data with an XML declaration
added by the DB2 database server will be returned.

Example: In a C program, implicitly serialize the customerinfo document for customer ID '1000' and
retrieve the serialized document into a binary XML host variable. The retrieved data is in the UTF-8
encoding scheme, and it contains an XML declaration.
EXEC SQL BEGIN DECLARE SECTION;
SQL TYPE IS XML AS BLOB (1M) xmlCustInfo;

EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT INFO INTO :xmlCustInfo

FROM Customer
WHERE Cid=1000;

Explicit XML serialization

After an explicit XMLSERIALIZE invocation, the data has a non-XML data type in the database server,
and is sent to the client as that data type.

The XMLSERIALIZE scalar function lets you specify:
v The SQL data type to which the data is converted when it is serialized

The data type is a character, graphic, or binary data type.
v Whether the output data should include the explicit encoding specification (EXCLUDING

XMLDECLARATION or INCLUDING XMLDECLARATION).

The output from XMLSERIALIZE is Unicode, character, or graphic data.

If you retrieve the serialized data into an non-binary data type, the data is converted to the application
encoding, but the encoding specification is not modified. Therefore, the encoding of the data most likely
will not agree with the encoding specification. This situation results in XML data that cannot be parsed
by application processes that rely on the encoding name.

28 IBM i: SQL XML Programming

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|

|

|

|

|
|

|

|
|
|
|

In general, implicit serialization is preferable because it is more efficient to send data to the client as XML
data. However, when the client does not support XML data, it is better to do an explicit XMLSERIALIZE:

If the client is an earlier version that does not support the XML data type, and you use implicit XML
serialization, the DB2 database server converts the data to a CLOB or DBCLOB before sending the data to
the client.

If you want the retrieved data to be some other data type, you can use XMLSERIALIZE.

Example: XML column Info in sample table Customer contains a document that contains the hierarchical
equivalent of the following data:
<customerinfo xml:space="default" xmlns="http://posample.org" Cid=’1000’>

<name>Kathy Smith</name>
<addr country=’Canada’>
<street>5 Rosewood</street>
<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>M6W 1E6</pcode-zip>
</addr>
<phone type=’work’>416-555-1358</phone>

</customerinfo>

Invoke XMLSERIALIZE to serialize the data and convert it to a BLOB type before retrieving it into a host
variable.
SELECT XMLSERIALIZE(Info as BLOB(1M)) into :hostvar from Customer

WHERE CID=1000

Differences in an XML document after storage and retrieval
When you store an XML document in a DB2 database and then retrieve that copy from the database, the
retrieved document might not be exactly the same as the original document. This behavior is defined by
the XML and SQL/XML standard.

Some of the changes to the document occur when the document is stored. Those changes are:
v If you execute XMLVALIDATE, the database server:

– Strips ignorable whitespace from the input document
v If you do not request XML validation, the database server:

– Strips boundary whitespace, if you do not request preservation
– Replaces all carriage return and line feed pairs (U+000D and U+000A), or carriage returns (U+000D),

within the document with line feeds (U+000A)
– Performs attribute-value normalization, as specified in the XML 1.0 specification

This process causes line feed (U+000A) characters in attributes to be replaced with space characters
(U+0020).

Additional changes occur when you retrieve the data from an XML column. Those changes are:
v If the data has an XML declaration before it is sent to the database server, the XML declaration is not

preserved.
With implicit serialization for DB2 CLI and embedded SQL applications, the DB2 database server adds
an XML declaration with the appropriate encoding specified to the data. For .NET applications, the
DB2 database server also adds an XML declaration. For Java applications, depending on the SQLXML
object methods that are called to retrieve the data from the SQLXML object, the data with an XML
declaration added by the DB2 database server will be returned.
If you execute the XMLSERIALIZE function, the DB2 database server adds an XML declaration with an
encoding specification if you specify the INCLUDING XMLDECLARATION option.

v Within the content of a document or in attribute values, certain characters are replaced with their
predefined XML entities. Those characters and their predefined entities are:

SQL XML programming 29

|
|

|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|

|
|

|
|

|
|
|
|

|

|

|

|

|

|
|

|

|
|

|

|
|

|
|
|
|
|

|
|

|
|

Character Unicode value Entity representation

AMPERSAND U+0026 &

LESS-THAN SIGN U+003C <

GREATER-THAN SIGN U+003E >

v Within attribute values, the QUOTATION MARK (U+0022) character is replaced with its predefined
XML entity ".

v If the input document has a DTD declaration, the declaration is not preserved, and no markup based
on the DTD is generated.

v If the input document contains CDATA sections, those sections are not preserved in the output.

Data types for archiving XML documents
Although you can store XML serialized string data in a column of any binary or character type, non-XML
columns should be used only for archiving XML data. The best column data type for archiving XML data
is a binary data type, such as BLOB. Use of a character column for archiving introduces CCSID
conversions, which can make a document inconsistent with its original form.

Using XMLTABLE to reference XML content as a relational table
The XMLTABLE built-in table function can be used to retrieve the content of an XML document as a
result set that can be referenced in SQL.

Assume you have a table called EMP with an XML column defined like this:
CREATE TABLE EMP (DOC XML)

The table contains 2 rows, which look like this:
<dept bldg="101">

<employee id="901">
<name>

<first>John</first>
<last>Doe</last>

</name>
<office>344</office>
<salary currency="USD">55000</salary>

</employee>
<employee id="902">

<name>
<first>Peter</first>
<last>Pan</last>

</name>
<office>216</office>
<phone>905-416-5004</phone>

</employee>
</dept>

<dept bldg="114">
<employee id="903">

<name>
<first>Mary</first>
<last>Jones</last>

</name>
<office>415</office>
<phone>905-403-6112</phone>
<phone>647-504-4546</phone>
<salary currency="USD">64000</salary>

</employee>
</dept>

30 IBM i: SQL XML Programming

||||

|||

|||

|||
|

|
|

|
|

|

|
|
|
|
|

|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

In the XMLTABLE function invocation, you specify a row-generating XPath expression and, in the
columns clause, one or more column-generating expressions. In this example, the row-generating
expression is the XPath expression $d/dept/employee. The passing clause indicates that the variable $d
refers to the XML column doc of the table emp.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING emp.doc AS "d"

COLUMNS
empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’) AS X

The row-generating expression is applied to each XML document in the XML column and produces one
or multiple employee elements (sub-trees) per document. The output of the XMLTABLE function contains
one row for each employee element. Hence, the output produced by the row-generating XPath expression
determines the cardinality of the result set of the SELECT statement.

The COLUMNS clause is used to transform XML data into relational data. Each of the entries in this
clause defines a column with a column name and an SQL data type. In the example above, the returned
rows have 3 columns named empID, firstname, and lastname of data types Integer, Varchar(20), and
Varchar(25), respectively. The values for each column are extracted from the employee elements, which
are produced by the row-generating XPath expression, and cast to the SQL data types. For example, the
path name/first is applied to each employee element to obtain the value for the column firstname. The
row-generating expression provides the context for the column-generating expressions. In other words,
you can typically append a column-generating expression to the row-generating expression to get an idea
of what a given XMLTABLE function returns for a column.

The result of the previous query is:
EMPID FIRSTNAME LASTNAME
----------- -------------------- -------------------------

901 John Doe
902 Peter Pan
903 Mary Jones

Be aware that the path expressions in the COLUMNS clause must not return more than one item per row.
If a path expression returns a sequence of two or more items, the XMLTABLE execution will typically fail,
as it is not possible to convert a sequence of XML values into an atomic SQL value.

Example: Use XMLTABLE to handle missing elements
XML data can contain optional elements that are not present in all of your documents

For example, employee Peter Pan does not have a salary element since it is not a required data field. It's
easy to deal with that because the XMLTABLE function produces NULL values for missing elements. You
can write XMLTABLE queries as if the salary element is always present.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
salary INTEGER PATH ’salary’) AS X

This query returns the following result. Note that the salary column for Peter Pan has the NULL value
since the XML document contains no salary value.

SQL XML programming 31

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

EMPID FIRSTNAME LASTNAME SALARY
----------- -------------------- ------------------------- ----------

901 John Doe 55000
902 Peter Pan -
903 Mary Jones 64000

If you want a value other than NULL to appear for a missing element, you can define a default value to
use when the expected element is missing. Here, we define the salary result column to return 0 instead of
NULL.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
salary INTEGER DEFAULT 0 PATH ’salary’) AS X

Example: Use XMLTABLE to subset result data
Often you want to produce a result containing a subset of the possible rows based on some filtering
predicate.

There are several ways to produce a subset of rows. One solution is to add a WHERE clause to the query
to filter using an output column. This requires all the rows to be generated only to be immediately
discarded. Another solution is to use filtering predicates in the row-generating expression of the
XMLTABLE function.

Suppose you need to produce rows only for employees in building 114. You can add a corresponding
condition to the XMLTABLE like this:
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept[@bldg="114"]/employee’ PASSING doc AS "d"

COLUMNS
empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
salary INTEGER DEFAULT 0 PATH ’salary’) AS X

This query returns a single row for Mary Jones, who is the only employee in building 114.

Example: Use XMLTABLE to handle multiple values
Sometimes a path expression refers to an item that has multiple values.

The path expressions in the COLUMNS clause must not produce more than one item per row. In the
sample documents, notice that the employee Mary Jones has two phone numbers. If you need to query
this data and return a relational table with each employee's name and phone number, the query you
would write might look like this:
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
phone VARCHAR(12) PATH ’phone’) AS X

When run against the sample documents, this query fails since there are two values for phone. A different
solution is needed.

Return only first value

32 IBM i: SQL XML Programming

|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|
|
|
|
|

|
|

|

One way to deal with this issue is to return only one of the multiple phone numbers. If you need
summarized information for each employee, having just one phone number might be enough. Returning
only one occurrence of the phone element can be done with a positional predicate in the XPath
expression for the column phone.

Square brackets in XPath are used to specify predicates. To obtain the first phone element for an
employee, use a positional predicate, written either as [1] or [fn:position()=1]. The first notation of [1]
is an abbreviated version of the second.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
phone VARCHAR(12) PATH ’phone[1]’) AS X

Return multiple values as XML

Another option to return multiple phone numbers for a single employee is to return an XML sequence of
phone elements. To achieve this, the generated phone column needs to be of type XML, which allows you
to return an XML value as the result of the XPath expression.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
phone XML PATH ’phone’) AS X

The result of this query is:
FIRSTNAME LASTNAME PHONE
----------- ---------- ------------------
John Doe -
Peter Pan <phone>905-416-5004</phone>
Mary Jones <phone>905-403-6112</phone><phone>647-504-4546</phone>

The XML value returned in the phone column for Mary Jones is not a well-formed XML document since
there is no single root element. This value can still be processed by DB2, but you won't be able to insert it
into an XML column or parse it with an XML parser. Combining multiple phone numbers into a single
VARCHAR or XML value may require additional code in your application to use the individual numbers.

Return multiple columns

Another solution is to return each phone number as a separate VARCHAR value by producing a fixed
number of result phone columns. This example uses positional predicates to return phone numbers in
two columns.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’,
phone VARCHAR(12) PATH ’phone[1]’,
phone2 VARCHAR(12) PATH ’phone[2]’) AS X

An obvious drawback to this approach is that a variable number of items is being mapped to a fixed
number of columns. One employee may have more phone numbers than anticipated. Others may have
fewer which results in null values. If every employee has exactly one office phone and one cell phone,
then producing two columns with corresponding names might be very useful.

SQL XML programming 33

|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

Return one row for each value

Instead of returning the phone numbers in separate columns, you can also use XMLTABLE to return
them in separate rows. In this case, you need to return one row for each phone number instead of one
row for each employee. This may result in repeated information in the columns for the first and last
names.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee/phone’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’../name/first’,
lastname VARCHAR(25) PATH ’../name/last’,
phone VARCHAR(12) PATH ’.’) AS X

The result of this query is:
FIRSTNAME LASTNAME PHONE
----------- ---------- ------------------

Peter Pan 905-416-5004
Mary Jones 905-403-6112
Mary Jones 647-504-4546

In this result, there is no row for John Doe since he has no phone number.

Handling non-existent path values

The previous example did not return a row for employee John Doe because the row-xquery expression
iterates over all the phone elements and there is no phone element for the employee John Doe. As a
result, the employee element for John Doe is never processed.

To resolve this issue, you need to use an SQL UNION of two XMLTABLE functions.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee/phone’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’../name/first’,
lastname VARCHAR(25) PATH ’../name/last’,
phone VARCHAR(12) PATH ’.’) AS X

UNION
SELECT Y.*, CAST(NULL AS VARCHAR(12))

FROM emp,
XMLTABLE (’$d/dept/employee[fn:not(phone)]’ PASSING doc AS "d"

COLUMNS
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’) AS Y

The $d/dept/employee[fn:not(phone)] row expression in the second XMLTABLE returns all employees
with no phone numbers, adding the employee rows that were omitted in the first XMLTABLE.

Example: Use XMLTABLE with namespaces
XML namespaces are a W3C XML standard for providing uniquely named elements and attributes in an
XML document. XML documents may contain elements and attributes from different vocabularies but
have the same name. By giving a namespace to each vocabulary, the ambiguity is resolved between
identical element or attribute names.

In XML documents, you declare XML namespaces with the reserved attribute xmlns, whose value must
contain an Universal Resource Identifier (URI). URIs are used as identifiers; they typically look like a
URL but they don't have to point to an existing web page. A namespace declaration can also contain a
prefix, used to identify elements and attributes. Below is an example of a namespace declaration with
and without prefix:

34 IBM i: SQL XML Programming

|

|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|

|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|

|
|
|
|
|

xmlns:ibm = "http://www.ibm.com/xmltable/"
xmlns = "http://www.ibm.com/xmltable/"

To demonstrate the use of namespaces with XMLTABLE, a sample document is added to the previous
example, so we are working with the following three rows:
<dept bldg="101">

<employee id="901">
<name>

<first>John</first>
<last>Doe</last>

</name>
<office>344</office>
<salary currency="USD">55000</salary>

</employee>
<employee id="902">

<name>
<first>Peter</first>
<last>Pan</last>

</name>
<office>216</office>
<phone>905-416-5004</phone>

</employee>
</dept>

<dept bldg="114">
<employee id="903">

<name>
<first>Mary</first>
<last>Jones</last>

</name>
<office>415</office>
<phone>905-403-6112</phone>
<phone>647-504-4546</phone>
<salary currency="USD">64000</salary>

</employee>
</dept>

<ibm:dept bldg="123" xmlns:ibm="http://www.ibm.com/xmltable">
<ibm:employee id="144">

<ibm:name>
<ibm:first>James</ibm:first>
<ibm:last>Bond</ibm:last>

</ibm:name>
<ibm:office>007</ibm:office>
<ibm:phone>905-007-1007</ibm:phone>
<ibm:salary currency="USD">77007</ibm:salary>

</ibm:employee>
</ibm:dept>

In order to return all the employees in the database, you can use the * wildcard for the namespace prefix
in the path expressions. This causes all elements to be considered, regardless of namespaces, because this
wildcard (*) matches any namespace including no namespace.
SELECT X.*

FROM emp,
XMLTABLE (’$d/*:dept/*:employee’ PASSING doc AS "d"

COLUMNS
empID INTEGER PATH ’@*:id’,
firstname VARCHAR(20) PATH ’*:name/*:first’,
lastname VARCHAR(25) PATH ’*:name/*:last’) AS X

The result of the query is:

SQL XML programming 35

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|

|

EMPID FIRSTNAME LASTNAME
----------- -------------------- -------------------------

901 John Doe
902 Peter Pan
903 Mary Jones
144 James Bond

For this specific data, the namespace wildcard for the attribute @id was not strictly necessary. The reason
is that the @id attribute employee James Bond has no namespace. Attributes never inherit namespaces
from their element and also never assume the default namespace. So, unless the attribute name has a
prefix, it doesn't belong to any namespace.

The use of the wildcard expression is the simplest way to return all employees, regardless of namespace.

Declaring a default element namespace

When all the elements you want to query belong to the same namespace, declaring a default element
namespace can be the simplest way to write your queries. You just need to declare the default namespace
in the beginning of your XPath expression and, after that, all unqualified elements you reference are tied
to that namespace.
SELECT X.*

FROM emp,
XMLTABLE (’declare default element namespace "http://www.ibm.com/xmltable";

$d/dept/employee’ PASSING doc AS "d"
COLUMNS

empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH

’declare default element namespace "http://www.ibm.com/xmltable"; name/first’,
lastname VARCHAR(25) PATH

’declare default element namespace "http://www.ibm.com/xmltable"; name/last’) AS X

The result is:
EMPID FIRSTNAME LASTNAME
----------- -------------------- -------------------------

144 James Bond

The column-generating expressions do not inherit the namespace declaration from the row-generating
expression. Each column-generating expression is a separate XPath query and needs its own namespace
declaration. These namespace declarations may differ from each other, for example, if your document
contains multiple namespaces.

Often there is only one namespace, in which case it would be convenient to declare a single namespace
for all expressions in the XMLTABLE function. This can be achieved by using the function
XMLNAMESPACES(). This function allows you to declare a default element namespace and/or several
namespace prefixes to be used within the XMLTABLE function. The advantage of using the
XMLNAMESPACES function is that the declared namespaces are global for all expressions in the
XMLTABLE context, so all the XPath expressions will be aware of these namespaces declarations and
repeated namespace declarations are not required.

The default namespace declared by the XMLNAMESPACES function applies to both the row-generating
expression and all the column-generating expressions. This way only one namespace declaration is
needed for all XPath expressions in an XMLTABLE function. The result of the following query is exactly
the same as the previous example.
SELECT X.*

FROM emp,
XMLTABLE (XMLNAMESPACES(DEFAULT ’http://www.ibm.com/xmltable’),

’$d/dept/employee’ PASSING doc AS "d"
COLUMNS

36 IBM i: SQL XML Programming

|
|
|
|
|
|

|
|
|
|

|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|

|

|
|
|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|

empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’) AS X

Declaring a namespace prefix with XMLNAMESPACES

If you want to select elements and attributes from multiple specific namespaces, then using namespace
prefixes can be your best option. Unless you use the XMLNAMESPACES function, the namespaces
prefixes need to be declared for every expression. But, just like for default element namespaces, you can
use the XMLNAMESPACES function to avoid repeated namespace declarations.
SELECT X.*

FROM emp,
XMLTABLE (XMLNAMESPACES(’http://www.ibm.com/xmltable’ AS "ibm"),

’$d/ibm:dept/ibm:employee’ PASSING doc AS "d"
COLUMNS

empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’ibm:name/ibm:first’,
lastname VARCHAR(25) PATH ’ibm:name/ibm:last’) AS X

Example: Number result rows for XMLTABLE
In some cases, you may want to generate a column that numbers the rows that XMLTABLE produces for
any given document. This can help your application to remember the order in which the values appeared
in each document.

To number the result rows, use the FOR ORDINALITY clause. Note that the numbering starts with 1 for
each document that is input to the XMLTABLE function.
SELECT X.*

FROM emp,
XMLTABLE (’$d/dept/employee’ PASSING doc AS "d"

COLUMNS
seqno FOR ORDINALITY,
empID INTEGER PATH ’@id’,
firstname VARCHAR(20) PATH ’name/first’,
lastname VARCHAR(25) PATH ’name/last’) AS X

The result of the query is:
SEQNO EMPID FIRSTNAME LASTNAME
-------- ----------- -------------------- -------------------------

1 901 John Doe
2 902 Peter Pan
1 903 Mary Jones

Updating XML data
To update data in an XML column, use the SQL UPDATE statement. Include a WHERE clause when you
want to update specific rows. The entire column value will be replaced. The input to the XML column
must be a well-formed XML document. The application data type can be an XML, character, or binary
type.

When you update an XML column, you might also want to validate the input XML document against a
registered XML schema. You can do that with the XMLVALIDATE function.

The following examples demonstrate how XML data can be updated in XML columns. The examples use
table MyCustomer, which is a copy of the sample Customer table. The examples assume that MyCustomer
already contains a row with a customer ID value of 1004. The XML data that updates existing column
data is assumed to be stored in a file c7.xml, whose contents look like this:
<customerinfo xmlns="http://posample.org" Cid="1004">

<name>Christine Haas</name>
<addr country="Canada">

<street>12 Topgrove</street>

SQL XML programming 37

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|

|

|
|
|
|
|

|

|
|
|
|

|
|

|
|
|
|

|
|
|
|

<city>Toronto</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9Y-8G9</pcode-zip>

</addr>
<phone type="work">905-555-5238</phone>
<phone type="home">416-555-2934</phone>

</customerinfo>

Example: In a JDBC application, read XML data from file c7.xml as binary data, and use it to update the
data in an XML column:
PreparedStatement updateStmt = null;
String sqls = null;
int cid = 1004;
sqls = "UPDATE MyCustomer SET Info=? WHERE Cid=?";
updateStmt = conn.prepareStatement(sqls);
updateStmt.setInt(1, cid);
File file = new File("c7.xml");
updateStmt.setBinaryStream(2, new FileInputStream(file), (int)file.length());
updateStmt.executeUpdate();

Example: In an embedded C application, update data in an XML column from a binary XML host
variable:
EXEC SQL BEGIN DECLARE SECTION;

sqlint64 cid;
SQL TYPE IS XML AS BLOB (10K) xml_hostvar;

EXEC SQL END DECLARE SECTION;
...
cid=1004;
/* Read data from file c7.xml into xml_hostvar */
...
EXEC SQL UPDATE MyCustomer SET Info=:xml_hostvar WHERE Cid=:cid;

In these examples, the value of the Cid attribute within the <customerinfo> element happens to be stored
in the Cid relational column as well. The WHERE clause in the UPDATE statements uses the relational
column Cid to specify the rows to update.

Deletion of XML data from tables
To delete rows that contain XML documents, use the SQL DELETE statement. Include a WHERE clause
when you want to delete specific rows.

An XML column must either be NULL or contain a well-formed XML document. To delete an XML
document from an XML column without deleting the row, use the UPDATE statement with SET NULL,
to set the column to NULL, if the column is defined as nullable.

The following example demonstrates how XML data can be deleted from XML columns. The example
uses table MyCustomer, which is a copy of the sample Customer table, and assume that MyCustomer has
been populated with all of the Customer data.

Example: Delete the rows from table MyCustomer for which the Cid column value is 1002.
DELETE FROM MyCustomer WHERE Cid=1002

XML schema repository
The XML schema repository (XSR) is a set of tables containing information about XML schemas.

XML instance documents might contain a reference to a Uniform Resource Identifier (URI) that points to
an associated XML schema. This URI is required to process the instance documents. The DB2 database
system manages dependencies on such externally referenced XML artifacts with the XSR without
requiring changes to the URI location reference.

38 IBM i: SQL XML Programming

|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|

|

|

|

|
|
|
|

Without this mechanism to store associated XML schemas, an external resource may not be accessible
when needed by the database. The XSR also removes the additional overhead required to locate external
documents, along with the possible performance impact.

An XML schema consists of a set of XML schema documents. To add an XML schema to the DB2 XSR,
you register XML schema documents to DB2, by calling the following DB2-supplied stored procedures:

SYSPROC.XSR_REGISTER
Begins registration of an XML schema. You call this stored procedure when you add the first
XML schema document to an XML schema.
CALL SYSPROC.XSR_REGISTER (’user1’, ’POschema’,

’http://myPOschema/PO’,
:content_host_var, NULL)

SYSPROC.XSR_ADDSCHEMADOC
Adds additional XML schema documents to an XML schema that you are in the process of
registering. You can call SYSPROC.XSR_ADDSCHEMADOC only for an existing XML schema
that is not yet complete.
CALL SYSPROC.XSR_ADDSCHEMADOC (’user1’, ’POschema’,

’http://myPOschema/address’,
:content_host_var, NULL)

SYSPROC.XSR_COMPLETE
Completes the registration of an XML schema.
CALL SYSPROC.XSR_COMPLETE (’user1’, ’POschema’, :schemaproperty_host_var, 0)

During XML schema completion, DB2 resolves references inside XML schema documents to other
XML schema documents. An XML schema document is not checked for correctness when
registering or adding documents. Document checks are performed only when you complete the
XML schema registration.

To remove an XML schema from the DB2 XML schema repository, you can:
v call the SYSPROC.XSR_REMOVE stored procedure or
v use the DROP XSROBJECT SQL statement.

Independent ASP considerations for the XML Schema Repository (XSR)

Because an independent auxiliary storage pool (ASP) can be switched between multiple systems, there
are some additional considerations for administering XML schemas on an ASP.

Use of an XML schema must be contained on the independent ASP where it was registered. You cannot
reference an XML schema that is defined in a different independent ASP group or in the system ASP
when the job is connected to the independent ASP.

Application programming language support
You can write applications to store XML data in DB2 databases tables, retrieve data from tables, or call
stored procedures or user-defined functions with XML parameters.

You can use any of the following languages to write your applications:
v ILE RPG
v ILE COBOL
v C and C++ (embedded SQL or DB2 CLI)
v Java (JDBC or SQLJ)

An application program can retrieve an entire document that is stored in an XML column.

SQL XML programming 39

|
|
|

|
|

|
|
|

|
|
|

|
|
|
|

|
|
|

|
|

|

|
|
|
|

|

|

|

|

|
|

|
|
|

|

|
|

|
|
|
|
|

|

When an application provides an XML value to a DB2 database server, the database server converts the
data from the XML serialized string format to an XML value with the specified CCSID.

When an application retrieves data from XML columns, the DB2 database server converts the data from
the XML value, with the specified CCSID, to the XML serialized string format. In addition, the database
server might need to convert the output data from the XML CCSID to the string CCSID.

When you retrieve XML data, you need to be aware of the effect of CCSID conversion on data loss. Data
loss can occur when characters in the source XML CCSID cannot be represented in the target string's
CCSID.

When you fetch an XML document, you retrieve the serialized form of a document into an application
variable.

XML column inserts and updates in CLI applications
When you update or insert data into XML columns of a table, the input data must be in the serialized
string format.

For XML data, you use SQLBindParameter() to bind parameter markers to input data buffers.

The SQL XML data type can be bound to the following application C character and graphic data types:
v SQL_C_CHAR
v SQL_VARCHAR
v SQL_C_WCHAR
v SQL_VARGRAPHIC

The following character LOB data types:
v SQL_C_CLOB
v SQL_C_CLOB_LOCATOR

and the following binary data types:
v SQL_C_BINARY
v SQL_C_BLOB
v SQL_C_BLOB_LOCATOR
v SQL_C_BINARY

When you bind a data buffer that contains XML data as a binary data type, DB2 CLI processes the XML
data as internally encoded data. This is the preferred method because it avoids the overhead and
potential data loss of character conversion when character types are used.

Note: The XML data should be bound to a binary data type when the XML is received from many
sources with different encoding schemes.

When you bind a data buffer that contains XML data as SQL_C_CHAR or SQL_C_WCHAR, DB2 CLI
processes the XML data as externally encoded data. DB2 CLI determines the encoding of the data as
follows:
v If the C type is SQL_C_WCHAR, DB2 CLI assumes that the data is encoded as UTF-16.
v If the C type is SQL_C_CHAR, DB2 CLI assumes that the data is encoded in the application's

single-byte default CCSID.

If you want the database server to implicitly parse the data before storing it in an XML column, the
parameter marker data type in SQLBindParameter() should be specified as SQL_XML.

40 IBM i: SQL XML Programming

|
|

|
|
|

|
|
|

|
|

|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|
|

|
|

|
|
|

|

|
|

|
|

The following example shows how to update XML data in an XML column using the SQL_C_BINARY
type.
char xmlBuffer[10240];
integer length;
// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)
// xmlBuffer contains an internally encoded XML document that is to replace
// the existing XML document
length = strlen (xmlBuffer);
SQLPrepare (hStmt, "UPDATE dept SET deptdoc = ? WHERE id = '001'", SQL_NTS);
SQLBindParameter (hStmt, 1, SQL_PARAM_INPUT, SQL_C_BINARY, SQL_XML, 0, 0,

xmlBuffer, 10240, &length);
SQLExecute (hStmt);

XML data retrieval in CLI applications
When you select data from XML columns in a table, the output data is in the serialized string format.

For XML data, when you use SQLBindCol() to bind columns in a query result set to application variables,
you can specify the application C character and graphic data types, the character and graphic LOB data
types, and the binary data types. When retrieving a result set from an XML column, you should consider
binding your application variable to the binary types. Binding to character types can result in possible
data loss resulting from the CCSID conversion. Data loss can occur when characters in the source XML
CCSID cannot be represented in the target string CCSID. Binding your variable to the binary types avoids
these issues.

XML data is returned to the application as internally encoded data. DB2 CLI determines the encoding of
the data as follows:
v If the C type is SQL_C_BINARY, DB2 CLI returns the data in the XML value encoding scheme.
v If the C type is SQL_C_CHAR, DB2 CLI returns the data in the application character encoding scheme.
v If the C type is SQL_C_WCHAR, DB2 CLI returns the data in the UTF-16 encoding scheme.

The database server performs an implicit serialization of the data before returning it to the application.
You can explicitly serialize the XML data to a specific data type by calling the XMLSERIALIZE function.
Implicit serialization is recommended, however, because explicitly serializing to character types with
XMLSERIALIZE can introduce encoding issues.

The following example shows how to retrieve XML data from an XML column into a binary application
variable.
char xmlBuffer[10240];
// xmlBuffer is used to hold the retrieved XML document
integer length;

// Assume a table named dept has been created with the following statement:
// CREATE TABLE dept (id CHAR(8), deptdoc XML)

length = sizeof (xmlBuffer);
SQLExecute (hStmt, "SELECT deptdoc FROM dept WHERE id='001'", SQL_NTS);
SQLBindCol (hStmt, 1, SQL_C_BINARY, xmlBuffer, &length, NULL);
SQLFetch (hStmt);
SQLCloseCursor (hStmt);
// xmlBuffer now contains a valid XML document encoded in UTF-8

Declaring XML host variables in embedded SQL applications
To exchange XML data between the database server and an embedded SQL application, you need to
declare host variables in your application source code.

XML data is stored in an XML data type column in a table. Columns with the XML data type are
described as an SQL_TYP_XML column SQLTYPE, and applications can bind various language-specific
data types for input to and output from these columns or parameters. XML columns can be accessed

SQL XML programming 41

|
|

|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|

|
|

|

|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

directly using SQL or the SQL/XML extensions. The XML data type applies to more than just columns.
Functions can have XML value arguments and produce XML values as well. Similarly, stored procedures
can take XML values as both input and output parameters.

XML data is character in nature and has an encoding that specifies the character set used. The encoding
of XML data can be determined externally, derived from the base application type containing the
serialized string representation of the XML document. It can also be determined internally, which requires
interpretation of the data. For Unicode encoded documents, a byte order mark (BOM), consisting of a
Unicode character code at the beginning of a data stream is recommended. The BOM is used as a
signature that defines the byte order and Unicode encoding form.

Existing character. graphic, and binary types, which include CHAR, VARCHAR, CLOB, DBCLOB, and
BLOB may be used in addition to XML host variables for fetching and inserting data. However, they will
not be subject to implicit XML parsing, as XML host variables would. Instead, an explicit XMLPARSE
function with default whitespace stripping is applied.

To declare XML host variables in embedded SQL applications, in the declaration section of the application
declare the XML host variables AS LOB data types. The examples shown here are for C, but similar
syntax exists for the other supported languages.
v SQL TYPE IS XML AS CLOB(n) <hostvar_name> to define a CLOB host variable that contains XML data

encoded in the CCSID specified by the SQL_XML_DATA_CCSID QAQQINI file option.
v SQL TYPE IS XML AS DBCLOB(n) <hostvar_name> to define a DBCLOB host variable that contains XML

data. It is encoded in the CCSID specified by the SQL_XML_DATA_CCSID QAQQINI file option if the
option is UCS-2 or UTF-16, otherwise the default CCSID is UTF-16.

v SQL TYPE IS XML AS BLOB(n) <hostvar_name> to define a BLOB host variable that contains XML data
internally encoded.

v SQL TYPE IS XML AS LOCATOR <hostvar_name> to define a locator that contains XML data.
v SQL TYPE IS XML AS CLOB_FILE <hostvar_name> to define a CLOB file that contains XML data encoded

in the file CCSID.
v SQL TYPE IS XML AS DBCLOB_FILE <hostvar_name> to define a DBCLOB file that contains XML data

encoded in the application double-byte default CCSID.
v SQL TYPE IS XML AS BLOB_FILE <hostvar_name> to define a BLOB file that contains XML data internally

encoded.

Example: Referencing XML host variables in embedded SQL applications:

The following sample applications demonstrate how to reference XML host variables in C and COBOL.

Embedded SQL C application:
EXEC SQL BEGIN DECLARE;

SQL TYPE IS XML AS CLOB(10K) xmlBuf;
SQL TYPE IS XML AS BLOB(10K) xmlblob;
SQL TYPE IS CLOB(10K) clobBuf;

EXEC SQL END DECLARE SECTION;
// using XML AS CLOB host variable
// The XML value written to xmlBuf will be prefixed by an XML declaration
// similar to: <?xml version = "1.0" encoding = "UTF-8"?>
// Note: The encoding name will depend upon the SQL_XML_DATA_CCSID QAQQINI setting
EXEC SQL SELECT xmlCol INTO :xmlBuf

FROM myTable
WHERE id = ’001’;

EXEC SQL UPDATE myTable
SET xmlCol = :xmlBuf
WHERE id = ’001’;

// using XML AS BLOB host variable
// The XML value written to xmlblob will be prefixed by an XML declaration

42 IBM i: SQL XML Programming

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|

|

|
|

|
|

|
|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

// similar to: <?xml version = "1.0" encoding = "UTF-8"?>
EXEC SQL SELECT xmlCol INTO :xmlblob

FROM myTable
WHERE id = ’001’;

EXEC SQL UPDATE myTable
SET xmlCol = :xmlblob
WHERE id = ’001’;

// using CLOB host variable
// The output will be encoded in the application single byte default CCSID,
// but will not contain an XML declaration
EXEC SQL SELECT XMLSERIALIZE (xmlCol AS CLOB(10K)) INTO :clobBuf

FROM myTable
WHERE id = ’001’;

EXEC SQL UPDATE myTable
SET xmlCol = XMLPARSE (:clobBuf PRESERVE WHITESPACE)
WHERE id = ’001’;

Embedded SQL COBOL application:
EXEC SQL BEGIN DECLARE SECTION END-EXEC.

01 xmlBuf USAGE IS SQL TYPE IS XML as CLOB(5K).
01 clobBuf USAGE IS SQL TYPE IS CLOB(5K).
01 xmlblob USAGE IS SQL TYPE IS XML AS BLOB(5K).

EXEC SQL END DECLARE SECTION END-EXEC.

* using XML AS CLOB host variable
EXEC SQL SELECT xmlCol INTO :xmlBuf

FROM myTable
WHERE id = ’001’.

EXEC SQL UPDATE myTable
SET xmlCol = :xmlBuf
WHERE id = ’001’.

* using XML AS BLOB host variable
EXEC SQL SELECT xmlCol INTO :xmlblob

FROM myTable
WHERE id = ’001’.

EXEC SQL UPDATE myTable
SET xmlCol = :xmlblob
WHERE id = ’001’.

* using CLOB host variable
EXEC SQL SELECT XMLSERIALIZE(xmlCol AS CLOB(10K)) INTO :clobBuf

FROM myTable
WHERE id= ’001’.

EXEC SQL UPDATE myTable
SET xmlCol = XMLPARSE(:clobBuf) PRESERVE WHITESPACE
WHERE id = ’001’.

Recommendations for developing embedded SQL applications with XML:

The following recommendations and restrictions apply to using XML within embedded SQL applications.
v Applications must access all XML data in the serialized string format.

– You must represent all data, including numeric and date time data, in its serialized string format.
v Externalized XML data is limited to 2 GB.
v All cursors containing XML data are non-blocking (each fetch operation produces a database server

request).
v Whenever character host variables contain serialized XML data, the host variable CCSID is assumed to

be used as the encoding of the data and must match any internal encoding that exists in the data.
v You must specify a LOB data type as the base type for an XML host variable.

SQL XML programming 43

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|

|
|

|
|

|

v When using static SQL, where an XML data type is expected for input, the use of CHAR, VARCHAR,
CLOB, DBCLOB, and BLOB host variables will be subject to an XMLPARSE operation with default
whitespace handling characteristics ('STRIP WHITESPACE'). Any other non-XML host variable type
will be rejected.

Identifying XML values in an SQLDA:

To indicate that a base type holds XML data, the sqlname field of the SQLVAR must be updated.
v sqlname.length must be 8
v The first two bytes of sqlname.data must be X'0000'
v The third and fourth bytes of sqlname.data should be X'0000'
v The fifth byte of sqlname.data must be X'01' (referred to as the XML subtype indicator only when the

first two conditions are met)
v The remaining bytes should be X'000000'

If the XML subtype indicator is set in an SQLVAR whose SQLTYPE is non-LOB, an SQL0804 error will be
returned at runtime.

Note: SQL_TYP_XML can only be returned from the DESCRIBE statement. This type cannot be used for
any other requests. The application must modify the SQLDA to contain a valid character or binary type,
and set the sqlname field appropriately to indicate that the data is XML.

Java
Java and XML

XML data in JDBC applications:

In JDBC applications, you can store data in XML columns and retrieve data from XML columns.

In database tables, the XML built-in data type is used to store XML data in a column.

In applications, XML data is in the serialized string format.

In JDBC applications, you can:
v Store an entire XML document in an XML column using setXXX methods.
v Retrieve an entire XML document from an XML column using getXXX methods.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML columns. Invocations
of metadata methods, such as ResultSetMetaData.getColumnTypeName return the integer value
java.sql.Types.SQLXML for an XML column type.

XML column updates in JDBC applications:

When you update or insert data into XML columns of a database table, the input data in your JDBC
applications must be in the serialized string format.

The following table lists the methods and corresponding input data types that you can use to put data in
XML columns.

Table 2. Methods and data types for updating XML columns

Method Input data type

PreparedStatement.setAsciiStream InputStream

PreparedStatement.setBinaryStream InputStream

44 IBM i: SQL XML Programming

|
|
|
|

|

|

|

|

|

|
|

|

|
|

|
|
|

|
|

|

|

|

|

|

|

|

|
|
|

|

|
|

|
|

||

||

||

||

Table 2. Methods and data types for updating XML columns (continued)

Method Input data type

PreparedStatement.setBlob Blob

PreparedStatement.setBytes byte[]

PreparedStatement.setCharacterStream Reader

PreparedStatement.setClob Clob

PreparedStatement.setObject byte[], Blob, Clob, SQLXML, InputStream, Reader, String

PreparedStatement.setString String

The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data. XML data that is sent to the database
server as binary data is treated as internally encoded data. XML data that is sent to the data source as
character data is treated as externally encoded data.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent to the data source as
character data, but the data contains encoding information. The data source handles incompatibilities
between internal and external encoding by generating an error if the external and internal encoding are
incompatible.

Data in XML columns is stored in the XML column CCSID. The database source handles conversion of
the data from its internal or external encoding to the XML column CCSID.

The following example demonstrates inserting data from an SQLXML object into an XML column. The
data is String data, so the database source treats the data as externally encoded.
public void insertSQLXML()
{

Connection con = DriverManager.getConnection(url);
SQLXML info = con.createSQLXML;

// Create an SQLXML object
PreparedStatement insertStmt = null;
String infoData =

"<customerinfo xmlns=""http://posample.org"" " +
"Cid=""1000"" xmlns=""http://posample.org"">...</customerinfo>";

cid.setString(cidData);
// Populate the SQLXML object

int cid = 1000;
try {

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = con.prepareStatement(sqls);
insertStmt.setInt(1, cid);
insertStmt.setSQLXML(2, info);

// Assign the SQLXML object value
// to an input parameter

if (insertStmt.executeUpdate() != 1) {
System.out.println("insertSQLXML: No record inserted.");

}
}
catch (IOException ioe) {
ioe.printStackTrace();

}
catch (SQLException sqle) {

System.out.println("insertSQLXML: SQL Exception: " +
sqle.getMessage());

System.out.println("insertSQLXML: SQL State: " +
sqle.getSQLState());

SQL XML programming 45

|

||

||

||

||

||

||

||
|

|
|
|
|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

System.out.println("insertSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}
}

The following example demonstrates inserting data from a file into an XML column. The data is inserted
as binary data, so the database server honors the internal encoding.
public void insertBinStream()
{

PreparedStatement insertStmt = null;
String sqls = null;
int cid = 0;
ResultSet rs=null;
Statement stmt=null;
try {

sqls = "INSERT INTO CUSTOMER (CID, INFO) VALUES (?, ?)";
insertStmt = conn.prepareStatement(sqls);
insertStmt.setInt(1, cid);
File file = new File(fn);
insertStmt.setBinaryStream(2,

new FileInputStream(file), (int)file.length());
if (insertStmt.executeUpdate() != 1) {

System.out.println("insertBinStream: No record inserted.");
}

}
catch (IOException ioe) {
ioe.printStackTrace();
}
catch (SQLException sqle) {
System.out.println("insertBinStream: SQL Exception: " +

sqle.getMessage());
System.out.println("insertBinStream: SQL State: " +

sqle.getSQLState());
System.out.println("insertBinStream: SQL Error Code: " +

sqle.getErrorCode());
}

}

XML data retrieval in JDBC applications:

In JDBC applications, you use ResultSet.getXXX or ResultSet.getObject methods to retrieve data from
XML columns.

When you retrieve data from XML columns of a DB2 table, the output data is in the serialized string
format.

You can use one of the following techniques to retrieve XML data:
v Use the ResultSet.getSQLXML method to retrieve the data. Then use a SQLXML.getXXX method to

retrieve the data into a compatible output data type. The SQLXML.getBinaryStream method adds an
XML declaration with encoding specification to the output data. The SQLXML.getString and
SQLXML.getCharacterStream methods do not add the XML declaration.

v Use a ResultSet.getXXX method other than ResultSet.getObject to retrieve the data into a compatible
data type.

The following table lists the ResultSet methods and corresponding output data types for retrieving XML
data.

Table 3. ResultSet methods and data types for retrieving XML data

Method Output data type

ResultSet.getAsciiStream InputStream

46 IBM i: SQL XML Programming

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|
|
|
|

|
|

|
|

||

||

||

Table 3. ResultSet methods and data types for retrieving XML data (continued)

Method Output data type

ResultSet.getBinaryStream InputStream

ResultSet.getBytes byte[]

ResultSet.getCharacterStream Reader

ResultSet.getSQLXML SQLXML

ResultSet.getString String

The following table lists the methods that you can call to retrieve data from a java.sql.SQLXML object,
and the corresponding output data types and type of encoding in the XML declarations.

Table 4. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type
Type of XML internal
encoding declaration added

SQLXML.getBinaryStream InputStream XML column CCSID encoding

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

If the application executes the XMLSERIALIZE function on the data that is to be returned, after execution
of the function, the data has the data type that is specified in the XMLSERIALIZE function, not the XML
data type. Therefore, the driver handles the data as the specified type and ignores any internal encoding
declarations.

The following example demonstrates retrieving data from an XML column into an SQLXML object, and
then using the SQLXML.getString method to retrieve the data into a string.
public void fetchToSQLXML()

{
System.out.println(">> fetchToSQLXML: Get XML data as an SQLXML object " +
"using getSQLXML");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
String colType = meta.getColumnType(1);
System.out.println("fetchToSQLXML: Column type = " + colType);
while (rs.next()) {
// Retrieve the XML data with getSQLXML.
// Then write it to a string with
// explicit internal ISO-10646-UCS-2 encoding.
java.sql.SQLXML xml = rs.getSQLXML(1);
System.out.println (xml.getString());

}
rs.close();
}
catch (SQLException sqle) {

System.out.println("fetchToSQLXML: SQL Exception: " +
sqle.getMessage());

SQL XML programming 47

|

||

||

||

||

||

||
|

|
|

||

||
|
|

|||

|||

|||

|||
|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

System.out.println("fetchToSQLXML: SQL State: " +
sqle.getSQLState());

System.out.println("fetchToSQLXML: SQL Error Code: " +
sqle.getErrorCode());

}
}

The following example demonstrates retrieving data from an XML column into a String variable.
public void fetchToString()

{
System.out.println(">> fetchToString: Get XML data " +
"using getString");
PreparedStatement selectStmt = null;
String sqls = null, stringDoc = null;
ResultSet rs = null;

try{
sqls = "SELECT info FROM customer WHERE cid = " + cid;
selectStmt = conn.prepareStatement(sqls);
rs = selectStmt.executeQuery();

// Get metadata
// Column type for XML column is the integer java.sql.Types.OTHER
ResultSetMetaData meta = rs.getMetaData();
String colType = meta.getColumnType(1);
System.out.println("fetchToString: Column type = " + colType);

while (rs.next()) {
stringDoc = rs.getString(1);
System.out.println("Document contents:");
System.out.println(stringDoc);

}
catch (SQLException sqle) {

System.out.println("fetchToString: SQL Exception: " +
sqle.getMessage());

System.out.println("fetchToString: SQL State: " +
sqle.getSQLState());

System.out.println("fetchToString: SQL Error Code: " +
sqle.getErrorCode());

}
}

Invocation of routines with XML parameters in Java applications:

SQL or external stored procedures and external user-defined functions can include XML parameters.

For SQL procedures, those parameters in the stored procedure definition have the XML type. For external
stored procedures and user-defined functions, XML parameters in the routine definition have the XML AS
type. When you call a stored procedure or user-defined function that has XML parameters, you need to
use a compatible data type in the invoking statement.

To call a routine with XML input parameters from a JDBC program, use parameters of the
java.sql.SQLXML type. To register XML output parameters, register the parameters as the
java.sql.Types.SQLXML type.

Example: JDBC program that calls a stored procedure that takes three XML parameters: an IN parameter,
an OUT parameter, and an INOUT parameter. This example requires JDBC 4.0.
java.sql.SQLXML in_xml = xmlvar;
java.sql.SQLXML out_xml = null;
java.sql.SQLXML inout_xml = xmlvar;

// Declare an input, output, and
// input/output XML parameter

48 IBM i: SQL XML Programming

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|
|
|
|

|
|
|

|
|

|
|
|
|
|
|

Connection con;
CallableStatement cstmt;
ResultSet rs;
...
stmt = con.prepareCall("CALL SP_xml(?,?,?)");

// Create a CallableStatement object
cstmt.setObject (1, in_xml); // Set input parameter
cstmt.setObject (3, inout_xml); // Set inout parameter
cstmt.registerOutParameter (2, java.sql.Types.SQLXML);
// Register out and input parameters
cstmt.registerOutParameter (3, java.sql.Types.SQLXML);
cstmt.executeUpdate(); // Call the stored procedure
out_xml = cstmt.getSQLXML(2); // Get the OUT parameter value
inout_xml = cstmt.getSQLXML(3); // Get the INOUT parameter value
System.out.println("Parameter values from SP_xml call: ");
System.out.println("Output parameter value ");
MyUtilities.printString(out_xml.getString());

// Use the SQLXML.getString
// method to convert the out_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

System.out.println("INOUT parameter value "); MyUtilities.printString(inout_xml.getString());
// Use the SQLXML.getString
// method to convert the inout_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

Example: SQLJ program that calls a stored procedure that takes three XML parameters: an IN parameter,
an OUT parameter, and an INOUT parameter. This example requires JDBC 4.0.
java.sql.SQLXML in_xml = xmlvar;
java.sql.SQLXML out_xml = null;
java.sql.SQLXML inout_xml = xmlvar;

// Declare an input, output, and
// input/output XML parameter

...
#sql [myConnCtx] {CALL SP_xml(:IN in_xml,

:OUT out_xml,
:INOUT inout_xml)};

// Call the stored procedure
System.out.println("Parameter values from SP_xml call: ");
System.out.println("Output parameter value ");
MyUtilities.printString(out_xml.getString());

// Use the SQLXML.getString
// method toconvert the out_xml value
// to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

System.out.println("INOUT parameter value "); MyUtilities.printString(inout_xml.getString());
// Use the SQLXML.getString
// method to convert the inout_xml
// value to a string for printing.
// Call a user-defined method called
// printString (not shown) to print
// the value.

XML data in SQLJ applications:

In SQLJ applications, you can store data in XML columns and retrieve data from XML columns.

In DB2 tables, the XML built-in data type is used to store XML data in a column.

SQL XML programming 49

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

In applications, XML data is in the serialized string format.

In SQLJ applications, you can:
v Store an entire XML document in an XML column using INSERT or UPDATE statements.
v Retrieve an entire XML document from an XML column using single-row SELECT statements or

iterators.

JDBC 4.0 java.sql.SQLXML objects can be used to retrieve and update data in XML columns. Invocations
of metadata methods, such as ResultSetMetaData.getColumnTypeName return the integer value
java.sql.Types.SQLXML for an XML column type.

XML column updates in SQLJ applications:

When you update or insert data into XML columns of a table in an SQLJ application, the input data must
be in the serialized string format.

The host expression data types that you can use to update XML columns are:
v java.sql.SQLXML (requires SQLJ Version 4.0 or later)
v String
v byte
v Blob
v Clob
v sqlj.runtime.AsciiStream
v sqlj.runtime.BinaryStream
v sqlj.runtime.CharacterStream

For stream types, you need to use an sqlj.runtime.typeStream host expression, rather than a
java.io.typeInputStream host expression so that you can pass the length of the stream to the JDBC driver.

The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data. XML data that is sent to the database
server as binary data is treated as internally encoded data. XML data that is sent to the data source as
character data is treated as externally encoded data. The external encoding is the default encoding for the
JVM.

External encoding for Java applications is always Unicode encoding.

Externally encoded data can have internal encoding. That is, the data might be sent to the data source as
character data, but the data contains encoding information. The data source handles incompatibilities
between internal and external encoding by generating an error if the external and internal encoding are
incompatible.

Data in XML columns is stored in the XML column CCSID.

Suppose that you use the following statement to insert data from String host expression xmlString into an
XML column in a table. xmlString is a character type, so its external encoding is used.
#sql [ctx] {INSERT INTO CUSTACC VALUES (1, :xmlString)};

sqlj.runtime.CharacterStream host expression: Suppose that you construct an
sqlj.runtime.CharacterStream host expression, and insert data from the sqlj.runtime.CharacterStream host
expression into an XML column in a table.

50 IBM i: SQL XML Programming

|

|

|

|
|

|
|
|

|

|
|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|

|

|
|
|
|

|

|
|

|

|
|
|

java.io.StringReader xmlReader =
new java.io.StringReader(xmlString);

sqlj.runtime.CharacterStream sqljXmlCharacterStream =
new sqlj.runtime.CharacterStream(xmlReader, xmlString.length());

#sql [ctx] {INSERT INTO CUSTACC VALUES (4, :sqljXmlCharacterStream)};

sqljXmlCharacterStream is a character type, so its external encoding is used.

Suppose that you retrieve a document from an XML column into a java.sql.SQLXML host expression, and
insert the data into an XML column in a table.
java.sql.ResultSet rs = s.executeQuery ("SELECT * FROM CUSTACC");
rs.next();
java.sql.SQLXML xmlObject = (java.sql.SQLXML)rs.getObject(2);
#sql [ctx] {INSERT INTO CUSTACC VALUES (6, :xmlObject)};

After you retrieve the data it is still in UTF-8 encoding, so when you insert the data into another XML
column, no conversion occurs.

XML data retrieval in SQLJ applications:

When you retrieve data from XML columns of a database table in an SQLJ application, the output data
must be explicitly or implicitly serialized.

The host expression or iterator data types that you can use to retrieve data from XML columns are:
v java.sql.SQLXML (SQLJ Version 4.0)
v String
v byte[]
v sqlj.runtime.AsciiStream
v sqlj.runtime.BinaryStream
v sqlj.runtime.CharacterStream

If the application does not call the XMLSERIALIZE function before data retrieval, the data is converted
from UTF-8 to the external application encoding for the character data types, or the internal encoding for
the binary data types. No XML declaration is added. If the host expression is an object of the
java.sql.SQLXML or com.ibm.db2.jcc.DB2Xml type, you need to call an additional method to retrieve the
data from this object. The method that you call determines the encoding of the output data and whether
an XML declaration with an encoding specification is added.

The following table lists the methods that you can call to retrieve data from a java.sql.SQLXML or a
com.ibm.db2.jcc.DB2Xml object, and the corresponding output data types and type of encoding in the
XML declarations.

Table 5. SQLXML and DB2Xml methods, data types, and added encoding specifications

Method Output data type
Type of XML internal encoding
declaration added

SQLXML.getBinaryStream InputStream XML column CCSID encoding

SQLXML.getCharacterStream Reader None

SQLXML.getSource Source None

SQLXML.getString String None

If the application executes the XMLSERIALIZE function on the data that is to be returned, after execution
of the function, the data has the data type that is specified in the XMLSERIALIZE function, not the XML
data type. Therefore, the driver handles the data as the specified type and ignores any internal encoding
declarations.

SQL XML programming 51

|
|
|
|
|

|

|
|

|
|
|
|

|
|

|

|
|

|

|

|

|

|

|

|

|
|
|
|
|
|

|
|
|

||

||
|
|

|||

|||

|||

|||
|

|
|
|
|

Suppose that you retrieve data from an XML column into a String host expression.
#sql iterator XmlStringIter (int, String);
#sql [ctx] siter = {SELECT C1, CADOC from CUSTACC};
#sql {FETCH :siter INTO :row, :outString};

The String type is a character type, so the data is converted from UTF-8 to the external encoding and
returned without any XML declaration.

Suppose that you retrieve data from an XML column into a byte[] host expression.
#sql iterator XmlByteArrayIter (int, byte[]);
XmlByteArrayIter biter = null;
#sql [ctx] biter = {SELECT c1, CADOC from CUSTACC};
#sql {FETCH :biter INTO :row, :outBytes};

The byte[] type is a binary type, so no data conversion from UTF-8 encoding occurs, and the data is
returned without any XML declaration.

Suppose that you retrieve a document from an XML column into a java.sql.SQLXML host expression, but
you need the data in a binary stream.
#sql iterator SqlXmlIter (int, java.sql.SQLXML);
SqlXmlIter SQLXMLiter = null;
java.sql.SQLXML outSqlXml = null;
#sql [ctx] SqlXmlIter = {SELECT c1, CADOC from CUSTACC};
#sql {FETCH :SqlXmlIter INTO :row, :outSqlXml};
java.io.InputStream XmlStream = outSqlXml.getBinaryStream();

The FETCH statement retrieves the data into the SQLXML object in UTF-8 encoding. The
SQLXML.getBinaryStream stores the data in a binary stream.

Routines
Routines and XML

XML support in SQL procedures:

SQL procedures support parameters and variables of data type XML. They can be used in SQL statements
in the same way as variables of any other data type.

The following example shows the declaration, use, and assignment of XML parameters and variables in
an SQL procedure:
CREATE TABLE T1(C1 XML) ;

CREATE PROCEDURE proc1(IN parm1 XML, IN parm2 VARCHAR(32000))
LANGUAGE SQL
BEGIN

DECLARE var1 XML;

/* insert the value of parm1 into table T1 */
INSERT INTO T1 VALUES(parm1);

/* parse parameter parm2’s value and assign it to a variable */
SET var1 = XMLPARSE(document parm2 preserve whitespace);

/* insert variable var1 into table T1
INSERT INTO T1 VALUES(var1);

END ;

52 IBM i: SQL XML Programming

|

|
|
|

|
|

|

|
|
|
|

|
|

|
|

|
|
|
|
|
|

|
|

|
|

|

|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

In the example above there is a table T1 with an XML column. The SQL procedure accepts two
parameters, parm1 and parm2. parm1 is of the XML data type. Within the SQL procedure an XML variable
is declared named var1.

The value of parameter parm2 is parsed using the XMLPARSE function and assigned to XML variable
var1. The XML variable value is then also inserted into column C1 in table T1.

Effect of commits and rollbacks on XML parameter and variable values in SQL procedures:

Commits and rollbacks within SQL procedures affect the values of parameters and variables of data type
XML. During the execution of SQL procedures, upon a commit or rollback operation, the values assigned
to XML parameters and XML variables will no longer be available.

Attempts to reference an SQL variable or SQL parameter of data type XML after a commit or rollback
operation will cause an error to be raised.

To successfully reference XML parameters and variables after a commit or rollback operation occurs, new
values must first be assigned to them.

Consider the availability of XML parameter and variable values when adding ROLLBACK and COMMIT
statements to SQL procedures.

XML data type support in external routines:

External procedures and functions written in programming languages that support parameters and
variables of data type XML:

These programming languages include:
v ILE RPG
v ILE COBOL
v C
v C++
v Java

XML data type values are represented in external routine code in the same way as character, graphic, and
binary data types.

When declaring external routine parameters of data type XML, the CREATE PROCEDURE and CREATE
FUNCTION statements that will be used to create the routines in the database must specify that the XML
data type is to be stored as a character, graphic, or binary data type. The size of the character, graphic, or
binary value should be close to the size of the XML document represented by the XML parameter.

The CREATE PROCEDURE statement below shows a CREATE PROCEDURE statement for an external
procedure implemented in the C programming language with an XML parameter named parm1:
CREATE PROCEDURE myproc(IN parm1 XML AS CLOB(2M), IN parm2 VARCHAR(32000))
LANGUAGE C
FENCED
PARAMETER STYLE SQL
EXTERNAL NAME ’mylib.myproc’;

Similar considerations apply when creating external UDFs, as shown in the example below:
CREATE FUNCTION myfunc (IN parm1 XML AS CLOB(2M))
RETURNS SMALLINT
LANGUAGE C
PARAMETER STYLE SQL
DETERMINISTIC

SQL XML programming 53

|
|
|

|
|

|

|
|
|

|
|

|
|

|
|

|

|
|

|

|

|

|

|

|

|
|

|
|
|
|

|
|

|
|
|
|
|

|

|
|
|
|
|

NOT FENCED
NULL CALL
NO SQL
NO EXTERNAL ACTION
EXTERNAL NAME ’mylib1.myfunc’

Within external routine code, XML parameter and variable values are accessed, set, and modified in the
same way as in database applications.

Example: XML support in Java (JDBC) procedure:

Once the basics of Java procedures, programming in Java using the JDBC application programming
interface (API) are understood, you can start creating and using Java procedures that query XML data.

This example of a Java procedure illustrates:
v CREATE PROCEDURE statement for a parameter style JAVA procedure
v Source code for a parameter style JAVA procedure
v Input and output parameters of data type XML

The Java external code file

The example shows a Java procedure implementation. The example consists of two parts: the CREATE
PROCEDURE statement and the external Java code implementation of the procedure from which the
associated Java class can be built.

The Java source file that contains the procedure implementations of the following examples is named
stpclass.java included in a JAR file named myJAR. The file has the following format:

Java external code file format
using System;
import java.lang.*;
import java.io.*;
import java.sql.*;
import java.util.*;

public class stpclass
{ ...
// Java procedure implementations

...
}

It is important to note the name of the class file and JAR name that contains a given procedure
implementation. These names are important, because the EXTERNAL clause of the CREATE
PROCEDURE statement for each procedure must specify this information so that DB2 can locate the class
at run time.

Example: Parameter style JAVA procedure with XML parameters

This example shows the following:
v CREATE PROCEDURE statement for a parameter style JAVA procedure
v Java code for a parameter style JAVA procedure with XML parameters

This procedure takes an input parameter, inXML, inserts a row including that value into a table,
queriesXML data using both an SQL statement and an XQuery expression, and sets two output
parameters, outXML1, and outXML2.

54 IBM i: SQL XML Programming

|
|
|
|
|

|
|

|

|
|

|

|

|

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|

|
|
|

Code to create a parameter style JAVA procedure with XML parameters
CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

IN inXML XML as CLOB (1K),
OUT out1XML XML as CLOB (1K),
OUT out2XML XML as CLOB (1K))

DYNAMIC RESULT SETS 0
DETERMINISTIC
LANGUAGE JAVA
PARAMETER STYLE JAVA
MODIFIES SQL DATA
FENCED
THREADSAFE
DYNAMIC RESULT SETS 0
PROGRAM TYPE SUB
NO DBINFO
EXTERNAL NAME ’stpclass.xmlProc1’;

public void xmlProc1(int inNum,
CLOB inXML ,
CLOB [] out1XML,
)

throws Exception
{

Connection con = DriverManager.getConnection("jdbc:default:connection");

// Insert data including the XML parameter value into a table
String query = "INSERT INTO xmlDataTable (num, inXML) VALUES (?, ?)" ;
String xmlString = inXML.getCharacterStream() ;

stmt = con.prepareStatement(query);
stmt.setInt(1, inNum);
stmt.setString (2, xmlString);
stmt.executeUpdate();
stmt.close();

// Query and retrieve a single XML value from a table using SQL
query = "SELECT xdata from xmlDataTable WHERE num = ? " ;

stmt = con.prepareStatement(query);
stmt.setInt(1, inNum);
ResultSet rs = stmt.executeQuery();

if (rs.next())
{ out1Xml[0] = (CLOB) rs.getObject(1); }

rs.close() ;
stmt.close();

return ;
}

Example: XML support in C procedure:

Once the basics of procedures, the essentials of C routines and XML are understood, you can start
creating and using C procedures with XML features.

The example below demonstrates a C procedure with parameters of type XML as well as how to update
and query XML data.

C parameter style SQL procedure with XML features

This example shows the following:
v CREATE PROCEDURE statement for a parameter style SQL procedure
v C code for a parameter style SQL procedure with XML parameters

SQL XML programming 55

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|

|

|

|

This procedure receives two input parameters. The first input parameter is named inNum and is of type
INTEGER. The second input parameters is named inXML and is of type XML. The values of the input
parameters are used to insert a row into the table xmlDataTable. Then an XML value is retrieved using an
SQL statement. The retrieved XML value is assigned to the out1XML parameter. No result sets are
returned.
CREATE PROCEDURE xmlProc1 (IN inNUM INTEGER,

IN inXML XML as CLOB (1K),
OUT out1XML XML as CLOB (1K)

)
LANGUAGE C
PARAMETER STYLE SQL
DYNAMIC RESULT SETS 0
DETERMINISTIC
MODIFIES SQL DATA
PROGRAM TYPE SUB
EXTERNAL NAME ’xmlProc1’ ;

//***
// Stored Procedure: xmlProc1
//
// Purpose: insert XML data into XML column
//
// Parameters:
//
// IN: inNum -- the sequence of XML data to be insert in xmldata table
// inXML -- XML data to be inserted
// OUT: out1XML -- XML data returned - value retrieved using SQL
//***
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlca.h>
#include <sqludf.h>
#include <sql.h>
#include <memory.h>

#ifdef __cplusplus
extern "C"
#endif
SQL_API_RC SQL_API_FN testSecA1(sqlint32* inNum,

SQLUDF_CLOB* inXML,
SQLUDF_CLOB* out1XML,
SQLUDF_NULLIND *inNum_ind,
SQLUDF_NULLIND *inXML_ind,
SQLUDF_NULLIND *out1XML_ind,
SQLUDF_TRAIL_ARGS)

{
char *str;
FILE *file;

EXEC SQL INCLUDE SQLCA;

EXEC SQL BEGIN DECLARE SECTION;
sqlint32 hvNum1;
SQL TYPE IS XML AS CLOB(200) hvXML1;
SQL TYPE IS XML AS CLOB(200) hvXML2;

EXEC SQL END DECLARE SECTION;

/* Check null indicators for input parameters */
if ((*inNum_ind < 0) || (*inXML_ind < 0)) {

strcpy(sqludf_sqlstate, "38100");
strcpy(sqludf_msgtext, "Received null input");
return 0;

}

/* Copy input parameters to host variables */

56 IBM i: SQL XML Programming

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

hvNum1 = *inNum;
hvXML1.length = inXML->length;
strncpy(hvXML1.data, inXML->data, inXML->length);

/* Execute SQL statement */
EXEC SQL

INSERT INTO xmlDataTable (num, xdata) VALUES (:hvNum1, :hvXML1);

/* Execute SQL statement */
EXEC SQL

SELECT xdata INTO :hvXML2
FROM xmlDataTable
WHERE num = :hvNum1;

exit:

/* Set output return code */
*outReturnCode = sqlca.sqlcode;
*outReturnCode_ind = 0;

return 0;
}

XML data encoding
The encoding of XML data can be derived from the data itself, which is known as internally encoded data,
or from external sources, which is known as externally encoded data.

The application data type that you use to exchange the XML data between the application and the XML
column determines how the encoding is derived.
v XML data that is in character or graphic application data types is considered to be externally encoded.

Like character and graphic data, XML data that is in these data types is considered to be encoded in
the host variable declared CCSID.

v XML data that is in a binary application data type or binary data that is in a character data type is
considered to be internally encoded.

Externally coded XML data might contain internal encoding, such as when an XML document in a
character data type contains an encoding declaration. Externally encoded data sent to a DB2 database is
checked by the database manager for internal encoding.

The effective CCSID that is associated with the internal encoding must match the external encoding;
otherwise, an error occurs.

Encoding considerations when storing or passing XML data
XML data must be encoded properly to be stored in a DB2 table. Encoding must be considered when the
data is retrieved from the table and used with DB2 stored procedures or user-defined functions, or when
used with external Java applications.

Encoding considerations for input of XML data to a database:

The internal and external encoding must be considered when storing XML data in a DB2 table.

The following rules need to be observed:
v For externally encoded XML data (data that is sent to the database server using character data types),

any internally encoded declaration must match the external encoding, otherwise an error occurs, and
the database manager rejects the document.

v For internally encoded XML data (data that is sent to the database server using binary data types), the
application must ensure that the data contains accurate encoding information.

SQL XML programming 57

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

|
|

|
|
|

|
|

|
|
|

|
|

|
|
|
|

|

|

|

|
|
|

|
|

Encoding considerations for retrieval of XML data from a database:

When you retrieve XML data from a DB2 table, you need to avoid data loss and truncation. Data loss can
occur when characters in the source data cannot be represented in the encoding of the target data.
Truncation can occur when conversion to the target data type results in expansion of the data.

Encoding considerations for passing XML data in routine parameters:

In a DB2 database system, several XML data types are available for parameters in a stored procedure or
user-defined function definition.

The following XML data types are available:

XML For SQL procedures and functions.

XML AS
For external procedures and external user-defined functions.

Data in XML AS parameters is subject to character conversion. Any application character or graphic data
type can be used for the parameters in the calling application, but the source data should not contain an
encoding declaration. Additional CCSID conversions may occur, which can make the encoding
information inaccurate. If the data is further parsed in the application, data corruption can result.

Encoding considerations for XML data in JDBC and SQLJ applications:

Typically, there are fewer XML encoding considerations for Java applications than for CLI or embedded
SQL applications. Although the encoding considerations for internally encoded XML data are the same
for all applications, the situation is simplified for externally encoded data in Java applications because the
application CCSID is always Unicode.

General recommendations for input of XML data in Java applications

v If the input data is in a file, read the data in as a binary stream (setBinaryStream) so that the database
manager processes it as internally encoded data.

v If the input data is in a Java application variable, your choice of application variable type determines
whether the DB2 database manager uses any internal encoding. If you input the data as a character
type (for example, setString), the database manager converts the data from UTF-16 (the application
CCSID) to the XML column CCSID before storing it.

General recommendations for output of XML data in Java applications

v If you output XML data to a file as non-binary data, you should add XML internal encoding to the
output data.
The encoding for the file system might not be Unicode, so string data can undergo conversion when it
is stored in the file.
For an explicit XMLSERIALIZE function with INCLUDING XMLDECLARATION, the database server
adds encoding, and the JDBC driver does not modify it.

v If the application sends the output data to an XML parser, you should retrieve the data in a binary
application variable, with UTF-8, UCS-2, or UTF-16 encoding.

Effects of XML encoding and serialization on data conversion
The method of specifying the encoding of XML data, either internally or externally, and the method of
XML serialization affect the conversion of XML data when passing the data between a database and an
application.

58 IBM i: SQL XML Programming

|

|
|
|

|

|
|

|

||

|
|

|
|
|
|

|

|
|
|
|

|

|
|

|
|
|
|

|

|
|

|
|

|
|

|
|

|
|
|
|

Encoding scenarios for input of internally encoded XML data to a database:

The following examples demonstrate how internal encoding affects data conversion and truncation
during input of XML data to an XML column.

In general, use of a binary application data type minimizes code page conversion problems during input
to a database.

Scenario 1

Encoding source Value

Data encoding UTF-8 Unicode input data, with or without a UTF-8 BOM or XML encoding declaration

Host variable data
type

Binary

Host variable
declared CCSID

Not applicable

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: None.

Data loss: None.

Truncation: None.

Scenario 2

Encoding source Value

Data encoding UTF-16 Unicode input data containing a UTF-16 BOM or XML encoding declaration

Host variable data
type

Binary

Host variable
declared CCSID

Not applicable

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: the DB2 database server converts the data from UTF-16 to UTF-8 when it performs
the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: None.

Scenario 3

Encoding source Value

Data encoding ISO-8859-1 input data containing an XML encoding declaration

SQL XML programming 59

|

|
|

|
|

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|

|||

||

Encoding source Value

Host variable data
type

Binary

Host variable
declared CCSID

Not applicable

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 819 to UTF-8 when it
performs the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: None.

Scenario 4

Encoding source Value

Data encoding Shift_JIS input data containing an XML encoding declaration

Host variable data
type

Binary

Host variable
declared CCSID

Not applicable

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS BLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 943 to UTF-8 when it
performs the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: None.

Encoding scenarios for input of externally encoded XML data to a database:

The following examples demonstrate how external encoding affects data conversion and truncation
during input of XML data to an XML column.

In general, when you use a character application data type, there is not a problem with CCSID
conversion during input to a database.

Only scenario 1 and scenario 2 apply to Java because the application code page for Java is always
Unicode because character strings in Java are always Unicode.

60 IBM i: SQL XML Programming

||

|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|

|
|

|
|

|
|

Scenario 1

Encoding source Value

Data encoding UTF-8 Unicode input data, with or without an appropriate encoding declaration or BOM

Host variable data
type

Character

Host variable
declared CCSID

1208 (UTF-8)

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))

Character conversion: None.

Data loss: None.

Truncation: None.

Scenario 2

Encoding source Value

Data encoding UTF-16 Unicode input data, with or without an appropriate encoding declaration or BOM

Host variable data
type

Graphic

Host variable
declared CCSID

1200 or 13488

Example input statements:
INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS DBCLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from UTF-16 to UTF-8 when it performs
the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-16 to UTF-8, due to expansion.

Scenario 3

Encoding source Value

Data encoding ISO-8859-1 input data, with or without an appropriate encoding declaration

Host variable data
type

Character

Host variable
declared CCSID

819

Example input statements:

SQL XML programming 61

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|

|||

||

|
|
|

|
|
|

|

|

INSERT INTO T1 (XMLCOL) VALUES (?)
INSERT INTO T1 (XMLCOL) VALUES

(XMLPARSE(DOCUMENT CAST(? AS CLOB) PRESERVE WHITESPACE))

Character conversion: The DB2 database system converts the data from CCSID 819 to UTF-8 when it
performs the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: None.

Scenario 4

Encoding source Value

Data encoding Shift_JIS input data, with or without an appropriate encoding declaration

Host variable data
type

Graphic

Host variable
declared CCSID

943

Example input statements:
INSERT INTO T1 VALUES (?)
INSERT INTO T1 VALUES

(XMLPARSE(DOCUMENT CAST(? AS DBCLOB)))

Character conversion: The DB2 database system converts the data from CCSID 943 to UTF-8 when it
performs the XML parse for storage in a UTF-8 XML column.

Data loss: None.

Truncation: None.

Encoding scenarios for retrieval of XML data with implicit serialization:

The following examples demonstrate how the target encoding and application code page affect data
conversion, truncation, and internal encoding during XML data retrieval with implicit serialization.

Only scenario 1 and scenario 2 apply to Java applications, because the application code page for Java
applications is always Unicode because character strings in Java are always Unicode.

Scenario 1

Encoding source Value

Target data encoding UTF-8 Unicode

Target host variable
data type

Binary

Host variable
declared CCSID

Not applicable

Example output statements:
SELECT XMLCOL FROM T1

Character conversion: None.

62 IBM i: SQL XML Programming

|
|
|

|
|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|
|
|

|
|

|

|

|

|
|

|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

Data loss: None.

Truncation: None.

Internal encoding in the serialized data: For applications other than Java applications, the data is prefixed by
the following XML declaration:
<?xml version="1.0" encoding="UTF-8" ?>

For Java applications, no encoding declaration is added, unless you cast the data as the
com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to retrieve the data. The declaration that is
added depends on the getDB2Xmlxxx that you use.

Scenario 2

Encoding source Value

Target data encoding UTF-16 Unicode

Target host variable
data type

Graphic

Host variable
declared CCSID

1200 or 13488

Example output statements:
SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-8 to UTF-16, due to expansion.

Internal encoding in the serialized data: For applications other than Java or .NET applications, the data is
prefixed by a UTF-16 Byte Order Mark (BOM) and the following XML declaration:
<?xml version="1.0" encoding="UTF-16" ?>

For Java applications, no encoding declaration is added, unless you cast the data as the
com.ibm.db2.jcc.DB2Xml type, and use a getDB2Xmlxxx method to retrieve the data. The declaration that is
added depends on the getDB2Xmlxxx that you use.

Scenario 3

Encoding source Value

Target data encoding ISO-8859-1 data

Target host variable
data type

Character

Host variable
declared CCSID

819

Example output statements:
SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

SQL XML programming 63

|

|

|
|

|

|
|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

|

|

|
|

|

|
|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 819. The DB2
database system generates an error.

Truncation: None.

Internal encoding in the serialized data: The data is prefixed by the following XML declaration:
<?xml version="1.0" encoding="ISO-8859-1" ?>

Scenario 4

Encoding source Value

Target data encoding Windows-31J data (superset of Shift_JIS)

Target host variable
data type

Graphic

Host variable
declared CCSID

943

Example output statements:
SELECT XMLCOL FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 943. The DB2
database system generates an error.

Truncation: Truncation can occur during conversion from UTF-8 to CCSID 943 due to expansion.

Internal encoding in the serialized data: The data is prefixed by the following XML declaration:
<?xml version="1.0" encoding="Windows-31J" ?>

Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE:

The following examples demonstrate how the target encoding and application code page affect data
conversion, truncation, and internal encoding during XML data retrieval with an explicit XMLSERIALIZE
invocation.

Only scenario 1 and scenario 2 apply to Java and .NET applications, because the application code page
for Java applications is always Unicode.

Scenario 1

Encoding source Value

Target data encoding UTF-8 Unicode

Target host variable
data type

Binary

Host variable
declared CCSID

Not applicable

Example output statements:
SELECT XMLSERIALIZE(XMLCOL AS BLOB(1M) INCLUDING XMLDECLARATION) FROM T1

Character conversion: None.

64 IBM i: SQL XML Programming

|
|

|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|

|

|
|

|

|

|

|

|
|
|

|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

Data loss: None.

Truncation: None.

Internal encoding in the serialized data: The data is prefixed by the following XML declaration:
<?xml version="1.0" encoding="UTF-8" ?>

Scenario 2

Encoding source Value

Target data encoding UTF-16 Unicode

Target host variable
data type

Graphic

Host variable
declared CCSID

1200 or 13488

Example output statements:
SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to UTF-16.

Data loss: None.

Truncation: Truncation can occur during conversion from UTF-8 to UTF-16, due to expansion.

Internal encoding in the serialized data: None, because EXCLUDING XMLDECLARATION is specified. If
INCLUDING XMLDECLARATION is specified, the internal encoding indicates UTF-8 instead of UTF-16.
This can result in XML data that cannot be parsed by application processes that rely on the encoding
name.

Scenario 3

Encoding source Value

Target data encoding ISO-8859-1 data

Target host variable
data type

Character

Host variable
declared CCSID

819

Example output statements:
SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 819.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 819. If a character
cannot be represented in CCSID 819, the DB2 database manager inserts a substitution character in the
output and issues a warning.

Truncation: None.

Internal encoding in the serialized data: None, because EXCLUDING XMLDECLARATION is specified. If
INCLUDING XMLDECLARATION is specified, the database manager adds internal encoding for UTF-8

SQL XML programming 65

|

|

|

|

|

|||

||

|
|
|

|
|
|

|

|

|

|

|

|

|
|
|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

|
|
|

|

|
|

instead of ISO-8859-1. This can result in XML data that cannot be parsed by application processes that
rely on the encoding name.

Scenario 4

Encoding source Value

Target data encoding Windows-31J data (superset of Shift_JIS)

Target host variable
data type

Graphic

Host variable
declared CCSID

943

Example output statements:
SELECT XMLSERIALIZE(XMLCOL AS CLOB(1M) EXCLUDING XMLDECLARATION) FROM T1

Character conversion: Data is converted from UTF-8 to CCSID 943.

Data loss: Possible data loss. Some UTF-8 characters cannot be represented in CCSID 943. If a character
cannot be represented in CCSID 943, the database manager inserts a substitution character in the output
and issues a warning.

Truncation: Truncation can occur during conversion from UTF-8 to CCSID 943 due to expansion.

Internal encoding in the serialized data: None, because EXCLUDING XMLDECLARATION is specified. If
INCLUDING XMLDECLARATION is specified, the internal encoding indicates UTF-8 instead of
Windows-31J. This can result in XML data that cannot be parsed by application processes that rely on the
encoding name.

Mappings of encoding names to effective CCSIDs for stored XML data
If data that you store in an XML column is in a binary application variable, or is an internally encoded
XML type, the DB2 database manager examines the data to determine the encoding. If the data has an
encoding declaration, the database manager maps the encoding name to a CCSID.

The QlgCvtTextDescToDesc API is used for mapping the IANA encoding name to the CCSID.

Mappings of CCSIDs to encoding names for serialized XML output data
As part of an implicit or explicit XMLSERIALIZE operation, the DB2 database manager adds an encoding
declaration at the beginning of serialized XML output data.

That declaration has the following form:
<?xml version="1.0" encoding="encoding-name"?>

In general, the character set identifier in the encoding declaration describes the encoding of the characters
in the output string. For example, when XML data is serialized to the CCSID that corresponds to the
target application data type, the encoding declaration describes the target application variable CCSID.

Where possible, the DB2 database manager chooses the IANA registry name for the CCSID, as prescribed
by the XML standard. The QlgCvtTextDescToDesc API is used for mapping the CCSID to the IANA
encoding name.

66 IBM i: SQL XML Programming

|
|

|

|||

||

|
|
|

|
|
|

|

|

|

|

|
|
|

|

|
|
|
|

|
|
|
|

|

|
|
|

|

|

|
|
|

|
|
|

Annotated XML schema decomposition
Annotated XML schema decomposition, also referred to as "decomposition" or "shredding," is the process
of storing content from an XML document in columns of relational tables. Annotated XML schema
decomposition operates based on annotations specified in an XML schema. After an XML document is
decomposed, the inserted data has the SQL data type of the column that it is inserted into.

An XML schema consists of one or more XML schema documents. In annotated XML schema
decomposition, or schema-based decomposition, you control decomposition by annotating a document's
XML schema with decomposition annotations. These annotations specify details such as:
v the name of the target table and column the XML data is to be stored in
v the default SQL schema for when a target table's SQL schema is not identified
v any transformation of the content before it is stored

Refer to the summary of decomposition annotations for further examples of what can be specified
through these annotations.

The annotated schema documents must be stored in and registered with the XML schema repository
(XSR). The schema must then be enabled for decomposition.

After the successful registration of the annotated schema, decomposition can be performed by calling the
decomposition stored procedure.

The data from the XML document is always validated during decomposition. If information in an XML
document does not comply with its specification in an XML schema then the data is not inserted into the
table.

Decomposing XML documents with annotated XML schemas
When you want to store pieces of an XML document in columns of one or more tables, you can use
annotated XML schema decomposition. This type of decomposition breaks an XML document down for
storage in tables, based on the annotations specified in a registered annotated XML schema.

To decompose XML documents using annotated XML schemas:
1. Annotate the schema documents with XML decomposition annotations.
2. Register the schema documents and enable the schema for decomposition.
3. If any of the registered schema documents that belong to the XML schema have changed, then all

XML schema documents for this XML schema must be registered again and the XML schema must be
enabled for decomposition again.

4. Decompose the XML document by calling the SYSPROC.XDBDECOMPXML stored procedure.

Registering and enabling XML schemas for decomposition
Once an annotated schema has been successfully registered and enabled for decomposition, you can use
it to decompose XML documents.
v Ensure that at least one element or attribute declaration in the XML schema is annotated with an XML

decomposition annotation. This annotated element or attributes must be a descendant of, or itself be, a
global element of complex type.

To register and enable XML schemas for decomposition:
1. Call the XSR_REGISTER stored procedure, passing in the primary schema document.
2. If the XML schema consists of more than one schema document, call the XSR_ADDSCHEMADOC

stored procedure for each of the schema documents that have not yet been registered.
3. Call the XSR_COMPLETE stored procedure with the issuedfordecomposition parameter set to 1.

SQL XML programming 67

|

|
|
|
|

|
|
|

|

|

|

|
|

|
|

|
|

|
|
|

|

|
|
|

|

|

|

|
|
|

|

|

|
|

|
|
|

|

|

|
|

|

Sources for annotated XML schema decomposition
Annotated XML schema decomposition can be performed on elements or attributes in an XML document,
and on the results of the db2-xdb:contentHandling or db2-xdb:expression annotations.

Annotated XML schema decomposition supports decomposition of the following types of content:
v The value of an attribute or element in the XML document.
v The value of an element in the XML document, where the exact content depends on the value of the

<db2-xdb:contentHandling> annotation. <db2-xdb:contentHandling> values are:

text Character data from the element, but not from its descendants

stringValue
Character data from the element and its descendants

serializedSubtree
Markup of all content between the element's start tag and end tag

v Values that are generated through the db2-xdb:expression annotation:
– A value that is based on the content of a mapped attribute or element in the XML document.
– A generated value that is independent of any values in the XML document.
– A constant.

An expression that is specified through the db2-xdb:expression is invoked once for every element or
attribute with which it is associated.

XML decomposition annotations
Annotated XML schema decomposition relies on annotations added to XML schema documents. These
decomposition annotations function as mappings between the elements or attributes of the XML
document to their target tables and columns in the database. Decomposition processing refers to these
annotations to determine how to decompose an XML document.

The XML decomposition annotations belong to the http://www.ibm.com/xmlns/prod/db2/xdb1
namespace and are identified by the "db2-xdb" prefix throughout the documentation. You can select your
own prefix; however, if you do, you must bind your prefix to the following namespace:
http://www.ibm.com/xmlns/prod/db2/xdb1. The decomposition process recognizes only annotations
that are under this namespace at the time the XML schema is enabled for decomposition.

The decomposition annotations are recognized by the decomposition process only if they are added to
element and attribute declarations, or as global annotations, in the schema document. They are either
specified as attributes or as part of an <xs:annotation> child element of the element or attribute
declaration. Annotations added to complex types, references, or other XML schema constructs are
ignored.

Although these annotations exist in the XML schema documents, they do not affect the original structure
of the schema document, nor do they participate in the validation of XML documents. They are referred
to only by the XML decomposition process.

Two annotations that are core features of the decomposition process are: db2-xdb:rowSet and
db2-xdb:column. These annotations specify the decomposed value's target table and column, respectively.
These two annotations must be specified in order for the decomposition process to successfully complete.
Other annotations are optional, but can be used for further control of how the decomposition process
operates.

Specification and scope of XML decomposition annotations
You can specify annotations for decomposition as element or attribute declarations in an XML schema
document.

68 IBM i: SQL XML Programming

|

|
|

|

|

|
|

||

|
|

|
|

|

|

|

|

|
|

|

|
|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|

You can do that in either of the following ways:
v As simple attributes in element or attribute declarations
v As structured (complex) child elements of simple element or attribute declarations

Annotations as attributes
Annotations specified as simple attributes on element or attribute declarations apply only to that element
or attribute on which it is specified.

For example, the db2-xdb:rowSet and db2-xdb:column decomposition annotations can be specified as
attributes. These annotations would be specified as follows:
<xs:element name="isbn" type="xs:string"

db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="ISBN"/>

The db2-xdb:rowSet and db2-xdb:column annotations apply only to this element named isbn.

Annotations as structured child elements
Annotations specified as structured children elements of an element or attribute declaration must be
specified in the schema document within the <xs:annotation><xs:appinfo></xs:appinfo></xs:annotation>
hierarchy defined by XML Schema.

For example, the db2-xdb:rowSet and db2-xdb:column annotations can be specified as children elements
(they are children of the <db2-xdb:rowSetMapping> annotation) as follows:
<xs:element name="isbn" type="xs:string">

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:element>

Specifying the db2-xdb:rowSet and db2-xdb:column annotations as children elements is equivalent to
specifying these annotations as attributes. While more verbose than the method of specifying annotations
as attributes, specifying annotations as children elements is required when you need to specify more than
one <db2-xdb:rowSetMapping> for an element or attribute; that is, when you need to specify multiple
mappings on the same element or attribute declaration.

Global annotations
When an annotation is specified as a child of the <xs:schema> element, it is a global annotation that
applies to all of the XML schema documents that make up the XML schema.

For example, the <db2-xdb:defaultSQLSchema> annotation indicates the default SQL schema for all
unqualified tables referenced in the XML schema. <db2-xdb:defaultSQLSchema> must be specified as a
child element of <xs:schema>:
<xs:schema>

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>
</xs:appinfo>

</xs:annotation>
...

</xs:schema>

This declaration specifies that all unqualified tables across all schema documents that form this XML
schema will have the SQL schema of "admin".

SQL XML programming 69

|

|

|

|
|
|

|
|

|
|

|

|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|
|

|
|
|
|
|
|
|
|

|
|

XML decomposition annotations - Summary
DB2 supports a set of annotations used by the annotated XML schema decomposition process to map
elements and attributes from an XML document to target database tables. The following summary of
some of the XML decomposition annotations is grouped by the tasks and actions you use the annotations
to perform.

For more information about a specific annotation, refer to the detailed documentation about it.

Table 6. Specifying the SQL schema

Action XML decomposition annotation

Specify the default SQL schema for all tables that do not
specify their SQL schema

db2-xdb:defaultSQLSchema

Specify an SQL schema different from the default for a
specific table

db2-xdb:table (<db2-xdb:SQLSchema> child element)

Table 7. Mapping XML elements or attributes to target base tables

Action XML decomposition annotation

Map a single element or attribute to single column and
table pair

db2-xdb:rowSet with db2-xdb:column as attribute
annotations or db2-xdb:rowSetMapping

Map a single element or attribute to one or more distinct
column and table pairs

db2-xdb:rowSetMapping

Map multiple elements or attributes to single column
and table pair

db2-xdb:table

Specify ordering dependencies between target tables db2-xdb:rowSetOperationOrder, db2-xdb:rowSet,
db2-xdb:order

Table 8. Specifying the XML data to be decomposed

Action XML decomposition annotation

Specify the type of content to be inserted for an element
of complex type (text, string, or markup)

db2-xdb:contentHandling

Specify any content transformation to be applied before
insertion

db2-xdb:normalization, db2-xdb:expression,
db2-xdb:truncate

Filter the data to be decomposed based on the item's
content or the context in which it appears

db2-xdb:condition db2-xdb:locationPath

db2-xdb:defaultSQLSchema decomposition annotation
The db2-xdb:defaultSQLSchema annotation specifies the default SQL schema for all table names
referenced in the XML schema that are not explicitly qualified using the db2-xdb:table annotation.

Annotation type

Child element of <xs:appinfo> that is a child of a global <xs:annotation> element.

How to specify

db2-xdb:defaultSQLSchema is specified in the following way (where value represents a valid value for the
annotation):
<xs:schema>

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>value</db2-xdb:defaultSQLSchema>

70 IBM i: SQL XML Programming

|
|
|
|
|

|

||

||

|
|
|

|
|
|

|

||

||

|
|
|
|

|
|
|

|
|
|

||
|
|

||

||

|
|
|

|
|
|
|

|
|
|

|

|
|
|

|

|

|

|
|

|
|
|
|

</xs:appinfo>
</xs:annotation>
...

</xs:schema>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

Either an ordinary or delimited SQL schema name. Ordinary, or undelimited, SQL schema names are
case-insensitive. To specify a delimited SQL schema, use quotation marks that are normally used to
delimit SQL identifiers. SQL schema names that contain the special characters '<' and '&' must be escaped
in the XML schema document.

Details

All tables referenced in annotated schemas must be qualified with their SQL schema. Tables can be
qualified in two ways, either by explicitly specifying the <db2-xdb:SQLSchema> child element of the
<db2-xdb:table> annotation or by using the <db2-xdb:defaultSQLSchema> global annotation. For any
unqualified table name, the value specified in <db2-xdb:defaultSQLSchema> is used as its SQL schema
name. If multiple schema documents in an annotated schema specify this annotation, all values must be
the same.

Example

The following example shows how the ordinary, or undelimited, SQL identifier admin is defined as the
SQL schema for all unqualified tables in the annotated schema:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xs:annotation>

<xs:appinfo>
<db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>

</xs:appinfo>
</xs:annotation>
...

</xs:schema>

The following example shows how the delimited SQL identifier admin schema is defined as the SQL
schema for all unqualified tables in the annotated schema. Note that admin schema must be delimited
with quotation marks:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xs:annotation>

<xs:appinfo>
<db2-xdb:defaultSQLSchema>"admin schema"</db2-xdb:defaultSQLSchema>

</xs:appinfo>
</xs:annotation>
...

</xs:schema>

db2-xdb:rowSet decomposition annotation
The db2-xdb:rowSet annotation specifies an XML element or attribute mapping to a target base table.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or child element of <db2-xdb:rowSetMapping> or
<db2-xdb:order>.

SQL XML programming 71

|
|
|
|

|

|

|

|
|
|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|

|
|
|

|
|
|
|
|
|
|
|
|

|
|

|

|
|

How to specify

db2-xdb:rowSet is specified in any of the following ways (where value represents a valid value for the
annotation):
v <xs:element db2-xdb:rowSet="value" />

v <xs:attribute db2-xdb:rowSet="value" />
v <db2-xdb:rowSetMapping>

<db2-xdb:rowSet>
value</db2-xdb:rowSet>

...
</db2-xdb:rowSetMapping>

v <db2-xdb:order>
<db2-xdb:rowSet>

value</db2-xdb:rowSet>
...

</db2-xdb:order>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

Any identifier that adheres to the rules for SQL identifiers. Refer to the identifiers documentation for
more information.

Details

The db2-xdb:rowSet annotation maps an XML element or attribute to a target base table. This annotation
can either identify a table name directly, or identify a rowSet name in more complex mappings, where the
rowSet is then associated with a table name through the db2-xdb:table annotation. In simple mappings,
this annotation specifies the name of the table the value is to be decomposed into. In more complex
mappings, where multiple rowSets (each with a distinct name) map to the same table, then this
annotation names the rowSet, rather than the table name.

The target base table into which this XML element's or attribute's value will be decomposed is
determined by the presence of other annotations in the set of schema documents that form the annotated
schema:
v If the value of db2-xdb:rowSet does not match any of the <db2-xdb:rowSet> children elements of the

<db2-xdb:table> global annotation, then the name of the target table is the value specified by this
annotation, qualified by an SQL schema defined by the <db2-xdb:defaultSQLSchema> global
annotation. This usage of db2-xdb:rowSet is for the case in which, for a particular table, there is only
one set of elements or attributes that maps to the table.

v If the value of db2-xdb:rowSet matches a <db2-xdb:rowSet> child element of the <db2-xdb:table>
global annotation, then the name of the target table is the table named in the <db2-xdb:name> child of
<db2-xdb:table>. This usage of db2-xdb:rowSet is for the more complex case in which, for a particular
table, there are multiple (possibly overlapping) sets of elements or attributes that map to that table.

Important: Ensure that the table that this annotation refers to exists in the database when the XML
schema is registered with the XML schema repository. (The columns specified in the db2-xdb:column
annotations must also exist when registering the XML schema.) If the table does not exist, then an error is
returned when the XML schema is enabled for decomposition. If <db2-xdb:table> specifies an object other
than a table, then an error is returned as well.

When the db2-xdb:rowSet annotation is used, either the db2-xdb:column annotation or the
db2-xdb:condition annotation must be specified. The combination of db2-xdb:rowSet and db2-xdb:column

72 IBM i: SQL XML Programming

|

|
|

|

|
|
|
|
|
|
|
|
|
|
|

|

|

|

|
|

|

|
|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|
|
|

|
|

describe the table and column to which this element or attribute will be decomposed into. The
combination of db2-xdb:rowSet and db2-xdb:condition specifies the condition that must be true for any
rows of that rowSet to be inserted into the table (referred to either directly, or indirectly through the
<db2-xdb:table> annotation).

Example

There are two ways of using db2-xdb:rowSet listed above.

Single set of elements or attributes mapped to a table

Assume for the following section of an annotated schema that the BOOKCONTENTS table belongs to the
SQL schema specified by <db2-xdb:defaultSQLSchema>, and that there is no global <db2-xdb:table>
element present which has a <db2-xdb:rowSet> child element that matches "BOOKCONTENTS".
<xs:element name="book">

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

<xs:complexType name="chapterType">
<xs:sequence>

<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"
db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTCONTENT" />

</xs:sequence>
<xs:attribute name="number" type="xs:integer"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTNUM" />
<xs:attribute name="title" type="xs:string"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTTITLE" />
</xs:complexType>

<xs:simpleType name="paragraphType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

Consider the following element from an XML document:
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
...

</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>
...
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>
...

</book>

The BOOKCONTENTS table is then populated as follows:

SQL XML programming 73

|
|
|
|

|

|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

Table 9. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 Introduction to XML XML is fun...

1-11-111111-1 2 XML and Databases XML can be used with...

...

1-11-111111-1 10 Further Reading Recommended tutorials...

Multiple sets of elements or attributes mapped to the same table

For the case where there exists a <db2-xdb:rowSet> child element of the <db2-xdb:table> global
annotation that matches the value specified in the db2-xdb:rowSet annotation, the element or attribute is
mapped to a table through the <db2-xdb:table> annotation. Assume for the following section of an
annotated schema that the ALLBOOKS table belongs to the SQL schema specified by
<db2-xdb:defaultSQLSchema>.
<!-- global annotation -->
<xs:annotation>

<xs:appinfo>
<db2-xdb:table>

<db2-xdb:name>ALLBOOKS</db2-xdb:name>
<db2-xdb:rowSet>book</db2-xdb:rowSet>
<db2-xdb:rowSet>textbook</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>

</xs:annotation>

<xs:element name="book">
<xs:complexType>

<xs:sequence>
<xs:element name="authorID" type="xs:integer"

db2-xdb:rowSet="book" db2-xdb:column="AUTHORID" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string"

db2-xdb:rowSet="book" db2-xdb:column="ISBN" />
<xs:attribute name="title" type="xs:string"

db2-xdb:rowSet="book" db2-xdb:column="TITLE" />
</xs:complexType>

</xs:element>
<xs:element name="textbook">

<xs:complexType>
<xs:sequence>

<xs:element name="isbn" type="xs:string"
db2-xdb:rowSet="textbook" db2-xdb:column="ISBN" />

<xs:element name="title" type="xs:string"
db2-xdb:rowSet="textbook" db2-xdb:column="TITLE" />

<xs:element name="primaryauthorID" type="xs:integer"
db2-xdb:rowSet="textbook" db2-xdb:column="AUTHORID" />

<xs:element name="coauthorID" type="xs:integer"
minOccurs="0" maxOccurs="unbounded" />

<xs:element name="subject" type="xs:string" />
<xs:element name="edition" type="xs:integer" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="chapterType">
<xs:sequence>

<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="number" type="xs:integer" />

74 IBM i: SQL XML Programming

||

||||

||||

||||

||||

||||
|

|

|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xs:attribute name="title" type="xs:string" />
</xs:complexType>

<xs:simpleType name="paragraphType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

Consider the following elements from an XML document:
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>

</book>

<textbook>
<isbn>0-11-011111-0</isbn>
<title>Programming with XML</title>
<primaryauthorID>435</primaryauthorID>
<subject>Programming</subject>
<edition>4</edition>
<chapter number="1" title="Programming Basics">

<paragraph>Before you being programming...</paragraph>
</chapter>
<chapter number="2" title="Writing a Program">

<paragraph>Now that you have learned the basics...</paragraph>
</chapter>
...
<chapter number="10" title="Advanced techniques">

<paragraph>You can apply advanced techniques...</paragraph>
</chapter>

</textbook>

In this example, there are two sets of elements or attributes that map to the table ALLBOOKS:
v /book/@isbn, /book/@authorID, /book/title
v /textbook/isbn, /textbook/primaryauthorID, /textbook/title

The sets are distinguished by associating different rowSet names to each.

Table 10. ALLBOOKS

ISBN TITLE AUTHORID

1-11-111111-1 My First XML Book 22

0-11-011111-0 Programming with XML 435

db2-xdb:table decomposition annotation
The db2-xdb:table annotation maps multiple XML elements or attributes to the same target column; or
enables you to specify a target table that has an SQL schema different from the default SQL schema
specified by <db2-xdb:defaultSQLSchema>.

Annotation type

Global child element of <xs:appinfo> (which is a child element of <xs:annotation>)

SQL XML programming 75

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

||

|||

|||

|||
|

|
|
|
|

|

|

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported children elements of db2-xdb:table, listed in the order in which they must
appear if they are specified:

<db2-xdb:SQLSchema>
(Optional) The SQL schema of the table.

<db2-xdb:name>
The name of the base table. This table name, when qualified with the value of either the
preceding <db2-xdb:SQLSchema> annotation or the <db2-xdb:defaultSQLSchema> annotation,
must be unique among all <db2-xdb:table> annotations across the set of XML schema documents
that form the annotated schema.

<db2-xdb:rowSet>
All elements and attributes that specify the same value for <db2-xdb:rowSet> form a row.
Because more than one <db2-xdb:rowSet> element can be specified for the same value of
<db2-xdb:name>, more than one set of mappings can be associated with a single table. The
combination of the <db2-xdb:rowSet> value with the columns specified in the db2-xdb:column
annotation allows more than one set of elements or attributes from a single XML document to be
mapped to columns of the same table.

At least one <db2-xdb:rowSet> element must be specified, and each <db2-xdb:rowSet> element
must be unique among all <db2-xdb:table> annotations across the set of XML schema documents
that form the annotated schema, for the annotation to be valid.

Whitespace within the character content of the children elements of db2-xdb:table is significant and not
normalized. Content of these elements must follow the spelling rules for SQL identifiers. Undelimited
values are case-insensitive; for delimited values, quotation marks are used as the delimiter. SQL
identifiers that contain the special characters '<' and '&', must be escaped.

Details

The db2-xdb:table annotation must be used in either of the following cases:
v when multiple paths are mapped to the same column of a table.
v when the table that is to hold the decomposed data is not of the same SQL schema as is defined by the

<db2-xdb:defaultSQLSchema> annotation.

Only base tables can be specified; other types of tables, such as temporary or materialized query tables,
are not supported for this mapping. Views and table aliases are not permitted for this annotation.

Example

The following example shows how the db2-xdb:table annotation can be used to group related elements
and attributes together to form a row, when multiple location paths are being mapped to the same
column. Consider first the following elements from an XML document (modified slightly from examples
used for other annotations).
<root>

...
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<email>author22@anyemail.com</email>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

76 IBM i: SQL XML Programming

|

|

|

|
|

|
|

|
|
|
|
|

|
|
|
|
|
|
|

|
|
|

|
|
|
|

|

|

|

|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|

<paragraph>XML is fun...</paragraph>
...

</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>
...
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>

</book>
...
<author ID="0800" email="author800@email.com">

<firstname>Alexander</firstname>
<lastname>Smith</lastname>
<activeStatus>0</activeStatus>

</author>
...

<root>

Assume that the purpose of this decomposition mapping is to insert rows that consist of author IDs and
their corresponding email addresses into the same table, AUTHORSCONTACT. Notice that author IDs
and email addresses appear in both the <book> element and the <author> element. Thus, more than one
location path will need to be mapped to the same columns of the same table. The <db2-xdb:table>
annotation, therefore, must be used. A section from the annotated schema is presented next, showing how
<db2-xdb:table> is used to associate multiple paths to the same table.
<!-- global annotation -->

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>adminSchema</db2-xdb:defaultSQLSchema>
<db2-xdb:table>

<db2-xdb:SQLSchema>user1</db2-xdb:SQLSchema>
<db2-xdb:name>AUTHORSCONTACT</db2-xdb:name>
<db2-xdb:rowSet>bookRowSet</db2-xdb:rowSet>
<db2-xdb:rowSet>authorRowSet</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>

</xs:annotation>

<xs:element name="book">
<xs:complexType>

<xs:sequence>
<xs:element name="authorID" type="xs:integer"

db2-xdb:rowSet="bookRowSet" db2-xdb:column="AUTHID" />
<xs:element name="email" type="xs:string"

db2-xdb:rowSet="bookRowSet" db2-xdb:column="EMAILADDR" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string" />
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

<xs:element name="author">
<xs:complexType>

<xs:sequence>
<xs:element name="firstname" type="xs:string" />
<xs:element name="lastname" type="xs:string" />
<xs:element name="activeStatus" type="xs:boolean" />

</xs:sequence>
<xs:attribute name="ID" type="xs:integer"

db2-xdb:rowSet="authorRowSet" db2-xdb:column="AUTHID" />

SQL XML programming 77

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xs:attribute name="email" type="xs:string"
db2-xdb:rowSet="authorRowSet" db2-xdb:column="EMAILADDR" />

</xs:complexType>
</xs:element>

The db2-xdb:table annotation identifies the name of the target table for a mapping with the
db2-xdb:name child element. In this example, AUTHORSCONTACT is the target table. To ensure that the
ID and email addresses from the <book> element are kept separate from those of the <author> element
(that is, each row contains logically related values), the <db2-xdb:rowSet> element is used to associate
related items. Even though in this example, the <book> and <author> elements are separate entities, there
can be cases where the entities to be mapped are not separate and require a logical separation, which can
be achieved through the use of rowSets.

Note that the AUTHORSCONTACT table exists in an SQL schema different from the default SQL schema,
and the <db2-xdb:SQLSchema> element is used to specify this. The resulting AUTHORSCONTACT table
is shown below:

Table 11. AUTHORSCONTACT

AUTHID EMAILADDR

22 author22@anyemail.com

0800 author800@email.com

db2-xdb:column decomposition annotation
The db2-xdb:column annotation specifies a column name of the table to which an XML element or
attribute has been mapped.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or child element of <db2-xdb:rowSetMapping>

How to specify

db2-xdb:column is specified in any of the following ways (where value represents a valid value for the
annotation):
v <xs:element db2-xdb:rowSet="value" db2-xdb:column="value" />

v <xs:attribute db2-xdb:rowSet="value" db2-xdb:column="value" />

v <db2-xdb:rowSetMapping>
<db2-xdb:rowSet>value</db2-xdb:rowSet>
<db2-xdb:column>value</db2-xdb:column>
...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

Any base table column name.

Details
v Undelimited column names are case-insensitive.

78 IBM i: SQL XML Programming

|
|
|
|

|
|
|
|
|
|
|

|
|
|

||

||

||

||
|

|
|
|

|

|

|

|
|

|

|

|
|
|
|
|

|

|

|

|

|

|

v When special characters, such as double quotation marks ("), ampersands (&), or less-than signs (<) are
part of SQL identifiers, those special characters need to be replaced by their equivalent XML notations.
For example, replace " with ", & with &, and < with <.

v db2-xdb:column is an optional child element of db2-xdb:rowSetMapping if the db2-xdb:locationPath
annotation is present.

Example

The following example shows how content from the <book> element can be inserted into columns of a
table called BOOKCONTENTS, using the db2-xdb:column annotation. A section of the annotated schema
is presented first.
<xs:element name="book">

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

<xs:complexType name="chapterType">
<xs:sequence>

<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"
db2-xdb:rowSet="BOOKCONTENTS"
db2-xdb:column="CHPTCONTENT" />

</xs:sequence>
<xs:attribute name="number" type="xs:integer"

db2-xdb:rowSet="BOOKCONTENTS"
db2-xdb:column="CHPTNUM" />

<xs:attribute name="title" type="xs:string"
db2-xdb:rowSet="BOOKCONTENTS"
db2-xdb:column="CHPTTITLE" />

</xs:complexType>

<xs:simpleType name="paragraphType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

The <book> element that is being mapped is presented next, followed by the resulting BOOKCONTENTS
table after the decomposition has completed.
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
...

</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>
...
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>

</book>

Table 12. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 Introduction to XML XML is fun...

SQL XML programming 79

|
|
|

|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

||||

||||

Table 12. BOOKCONTENTS (continued)

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 2 XML and Databases XML can be used with...

...

1-11-111111-1 10 Further Reading Recommended tutorials...

db2-xdb:locationPath decomposition annotation
The db2-xdb:locationPath annotation maps an XML element or attribute to different table and column
pairs, depending on the path of the element or attribute.

The db2-xdb:locationPath annotation is used to describe the mappings for elements or attributes that are
either declared globally or as part of :
v A named model group
v A named attribute group
v A global complex type declaration
v A global element or attribute of simple or complex type

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-xdb:rowSetMapping>>

How to specify

db2-xdb:locationPath is specified in any of the following ways (where value represents a valid value for
the annotation):
v <xs:element db2-xdb:locationPath="value" />

v <xs:attribute db2-xdb:locationPath="value" />

v

<db2-xdb:rowSetMapping> db2-xdb:locationPath="value">
<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

The value of db2-xdb:locationPath must have the following syntax:

�� �/ name / name
prefix : prefix :

@ name
prefix :

��

name An element or attribute name.

prefix A namespace prefix.

80 IBM i: SQL XML Programming

|

||||

||||

||||

||||
|

|
|
|

|
|

|

|

|

|

|

|

|

|
|

|

|

|

|
|
|
|

|

|

|

|

||

|

||

||

The namespace prefix must be associated with a namespace in the schema document that
contains the annotation with db2-xdb:locationPath. A namespace prefix binding can be created by
adding a namespace declaration to the <xs:schema> element of the schema document.

Details

For element or attribute declarations that cannot be reused (local declarations that are not part of named
complex type definitions or named model or attribute groups), the db2-xdb:locationPath annotation has
no effect.

db2-xdb:locationPath should be used when global element or attribute declarations are used as references
from other paths (for example: <xs:element ref="abc">). Because annotations cannot be specified directly
on references, the annotations must be specified on the corresponding global element or attribute
declaration. A global element or attribute can be referenced from many different contexts within the XML
schema. In general, db2-xdb:locationPath should be used to distinguish the mappings in different
contexts. For named complex types, model groups, and attribute groups, the element and attribute
declarations should be annotated for each context in which they are mapped for decomposition. The
db2-xdb:locationPath annotation should be used to specify the target rowSt and column pair for each
path. The same db2-xdb:locationPath value can be used for different rowSet and column pairs.

When a default namespace and the attributeFormDefault ="unqualified" are specified, decomposition
annotations for unqualified attributes are ignored because the annotation processing treats the attribute as
it if belongs to the default namespace. However, the attributeFormDetail = "unqualified" setting indicates
that the attribute actually belongs to the global namespace. In this case, the mapping for this attribute is
ignored and no value is inserted.

Example

The following example shows how the same attribute can be mapped to different tables depending on
the context in which this attribute appears. A section of the annotated schema is presented first.

<!-- global attribute -->
<xs:attribute name="title" type="xs:string"

db2-xdb:rowSet="BOOKS"
db2-xdb:column="TITLE"
db2-xdb:locationPath="/books/book/@title">

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping> db2-xdb:locationPath="/books/book/chapter/@title">
<db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>
<db2-xdb:column>CHPTTITLE</db2-xdb:column>

</db2-xdb:rowSetMapping>>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

<xs:element name="books">
<xs:complexType>

<xs:sequence>
<xs:element name="book">

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string" />
<xs:attribute ref="title" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

SQL XML programming 81

|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|
|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xs:complexType name="chapterType">
<xs:sequence>

<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded" />
</xs:sequence>
<xs:attribute name="number" type="xs:integer" />
<xs:attribute ref="title" />

</xs:complexType>

<xs:simpleType name="paragraphType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

Note that there is only one attribute declaration named "title", but there are two references to this
attribute in different contexts. One reference is from the <book> element, and the other is from the
<chapter> element. The value of the "title" attribute needs to be decomposed into different tables
depending on the context. This annotated schema specifies that a "title" value is decomposed into the
BOOKS table if it is a book title and into the BOOKCONTENTS table if it is a chapter title.

The <books> element that is being mapped is presented next, followed by the resulting BOOKS table
after the decomposition has completed.
<books>

<book isbn="1-11-111111-1" title="My First XML Book">
<authorID>22</authorID>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
...

</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>
...
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>

</book>
...
</books>

Table 13. BOOKS

ISBN TITLE CONTENT

NULL My First XML Book NULL

Table 14. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

NULL NULL Introduction to XML NULL

NULL NULL XML and Databases NULL

...

NULL NULL Further Reading NULL

db2-xdb:expression decomposition annotation
The db2-xdb:expression annotation specifies a customized expression, the result of which is inserted into
the table this element is mapped to.

82 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

||

|||

|||
|

||

||||

||||

||||

||||

||||
|

|
|
|

Annotation type

Attribute of <xs:element> or <xs:attribute>, or optional child element of <db2-xdb:rowSetMapping>,
effective only on annotations that include a column mapping

How to specify

db2-xdb:expression is specified in any of the following ways (where value represents a valid value for the
annotation):
v <xs:element db2-xdb:expression="value" db2-xdb:column="value" />

v <xs:attribute db2-xdb:expression="value" db2-xdb:column="value" />

v

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>value</db2-xdb:rowSet>
<db2-xdb:column>value</db2-xdb:column>
<db2-xdb:expression>value</db2-xdb:expression>
...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

The value of db2-xdb:expression must have the following syntax, which constitutes a subset of SQL
expressions:

expression:

�� �

,

function-name (expression)
constant
$DECOMP_CONTENT
$DECOMP_DOCUMENTID
(scalar-fullselect)
expression + expression

-
*
/
CONCAT

(expression)
special-register
CAST (expression AS data-type)
XML-function

��

Details

The db2-xdb:expression annotation enables you to specify a customized expression, which is applied to
the content of the XML element or attribute that is annotated when $DECOMP_CONTENT is used. The
result of evaluating this expression is inserted into the column that is specified during decomposition.

db2-xdb:expression is useful in cases where you want to insert constant values (such as the name of an
element), or generated values that do not appear in the document.

SQL XML programming 83

|

|
|

|

|
|

|

|

|

|
|
|
|
|
|

|

|

|

|
|

|

||

|

|

|
|
|

|
|

db2-xdb:expression must be specified using valid SQL expressions, and the type of the evaluated
expression must be statically determinable and compatible with the type of the target column that the
value is to be inserted into. The following subset of SQL expressions are supported; any other SQL
expressions not described below are unsupported and have an undefined behavior in the context of this
annotation.

Schema names, table names, and column names in the db2-xdb:expression annotation must use SQL
naming for qualification and are case sensitive only if the names are delimited.

function (expression-list)
A built-in or user-defined SQL scalar function. A scalar function returns a single value (possibly
null).

constant
A value that is a string constant or a numeric constant.

$DECOMP_CONTENT
The value of the mapped XML element or attribute from the document, constructed according to
the setting of the db2-xdb:contentHandling annotation.

$DECOMP_DOCUMENTID
The string value specified in the documentid input parameter of the XDBDECOMPXML stored
procedure, which identifies the XML document being decomposed.

(scalar-fullselect)
A fullselect, enclosed in parentheses, that returns a single row consisting of a single column
value. If the fullselect does not return a row, the result of the expression is the NULL value.

expression operator expression
The result of two supported expression operands, as defined in the supported values listing
above.

(expression)
An expression enclosed in parentheses that conforms to the list of supported expressions defined
above.

special-register
The name of a supported special register. This setting evaluates to the value of the special register
for the current server.

CAST (expression AS data-type)
The expression cast to the specified SQL data type, if the expression is not NULL. If the
expression is NULL, the result is a null value of the SQL data type specified. When inserting a
NULL value into a column, the expression must cast NULL into a compatible column type (for
example: CAST (NULL AS INTEGER), for an integer column).

XML-function
Any supported SQL/XML function.

Example

This example demonstrates the types of operations that you can perform with db2-xdb:expression
annotations. The example also demonstrates cases in which XML input must be cast to an SQL type.

The input XML document looks like this:
<num>
1000.99
</num>

The annotated XML schema produces a row for a table with the following definition:

84 IBM i: SQL XML Programming

|
|
|
|
|

|
|

|
|
|

|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|

|
|
|
|
|

|
|

|

|
|

|

|
|
|

|

CREATE TABLE TAB1
(ASIS DECIMAL(9,2),
ADD INTEGER,
TAX INTEGER,
STR VARCHAR(25),
LITERAL DECIMAL(5,1)
SELECT VARCHAR(25))

The annotated XML schema uses a table with the following definition:
CREATE TABLE SCH1.TAB2

(ID INTEGER,
COL1 VARCHAR(25))

Table SCH1.TAB2 contains one row with the values (100, 'TAB2COL1VAL').
<xs:element name="num" type="xs:double">

<xs:annotation>
<xs:appinfo>

<xdb:rowSetMapping>
<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>ASIS</xdb:column>

</xdb:rowSetMapping>
<xdb:rowSetMapping>

<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>ADD</xdb:column>
<xdb:expression>

CAST(XDB.ADD(1234,CAST($DECOMP_CONTENT AS INTEGER)) AS INTEGER)
</xdb:expression>

</xdb:rowSetMapping>
<xdb:rowSetMapping>

<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>TAX</xdb:column>
<xdb:expression>

CAST(XDB.TAX(CAST($DECOMP_CONTENT AS DOUBLE)) AS INTEGER)
</xdb:expression>

</xdb:rowSetMapping>
<xdb:rowSetMapping>

<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>STR</xdb:column>
<xdb:expression>

CAST($DECOMP_CONTENT AS VARCHAR(25))
</xdb:expression>

</xdb:rowSetMapping>
<xdb:rowSetMapping>

<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>LITERAL</xdb:column>
<xdb:expression>32.3</xdb:expression>

</xdb:rowSetMapping>
<xdb:rowSetMapping>

<xdb:rowSet>TAB1</xdb:rowSet>
<xdb:column>SELECT</xdb:column>
<xdb:expression>

(SELECT "COL1" FROM "SCH1"."TAB2" WHERE "ID" = 100)
</xdb:expression>

</xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:element>

Assume that there is a user-defined function called AuthNumBooks that takes an integer parameter,
which represents the author's ID, and returns the total number of books that author has in the system.

SQL XML programming 85

|
|
|
|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

Table 15. TAB1

ASIS ADD TAX STR LITERAL SELECT

1000.99 2234 300 1000.99 32.3 TAB2COL1VAL

db2-xdb:condition decomposition annotation
The db2-xdb:condition annotation specifies a condition that determines if a row will be inserted into a
table. A row that satisfies the condition might be inserted (depending on other conditions for the rowSet,
if any); a row that does not satisfy the condition will not be inserted.

The condition is applied regardless of whether the annotation to which it belongs contains a column
mapping.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or optional child element of <db2-xdb:rowSetMapping>.

How to specify

db2-xdb:condition is specified in any of the following ways (where value represents a valid value for the
annotation):
v <xs:element db2-xdb:condition="value" />

v <xs:attribute db2-xdb:condition="value" />
v <db2-xdb:rowSetMapping>

<db2-xdb:rowSet>value</db2-xdb:rowSet>
<db2-xdb:condition>value</db2-xdb:condition>
...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

SQL predicates of the following types:
v basic
v quantified
v BETWEEN
v DISTINCT
v EXISTS
v IN
v LIKE
v NULL

The predicates must also consist of expressions that are supported by the db2-xdb:expression annotation,
column names, or both.

Details

If the db2-xdb:condition annotation is specified on multiple element or attribute declarations of the same
rowSet, then the row will be inserted only when the logical AND of all conditions evaluate to true.

86 IBM i: SQL XML Programming

||

||||||

||||||
|

|
|
|
|

|
|

|

|

|

|
|

|

|
|
|
|
|
|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|

|
|

Column names in db2-xdb:condition

Because db2-xdb:condition consists of SQL predicates, column names can be specified in this annotation.
If a db2-xdb:condition annotation involving a rowSet contains an unqualified column name, there must
exist a mapping to that column among all of the mappings involving that rowSet. Other column names,
when used in predicates containing SELECT statements, must be qualified. If db2-xdb:condition specifies
an unqualified column name, but the element or attribute for which db2-xdb:condition is specified does
not have a column mapping specified, then when the condition is evaluated, the value that is evaluated
is the content of the element or attribute that maps to the referenced column name.

Consider the following example:
<xs:element name="a" type="xs:string"

db2-xdb:rowSet="rowSetA" db2-xdb:condition="columnX=’abc’" />
<xs:element name="b" type="xs:string"

db2-xdb:rowSet="rowSetB" db2-xdb:condition="columnX" />

Notice that <a> does not have a column mapping specified, but the condition references the column
"columnX". When the condition is evaluated, "columnX" in the condition will be replaced with the value
from , because has specified a column mapping for "columnX", while <a> does not have a
column mapping. If the XML document contained:
<a>abc
def

then the condition would evaluate to false in this case, because the value from , "def", is evaluated in
the condition.

If $DECOMP_CONTENT (a decomposition keyword that specifies the value of the mapped element or
attribute as character data), instead of the column name, is used in the db2-xdb:condition attached to the
element <a> declaration, then the condition is evaluated using the value of <a>, rather than .
<xs:element name="a" type="xs:string"

db2-xdb:rowSet="rowSetA" db2-xdb:condition="$DECOMP_CONTENT=’abc’" />
<xs:element name="b" type="xs:string"

db2-xdb:rowSet="rowSetB" db2-xdb:column="columnX" />

If the XML document contained:
<a>abc
def

then the condition would evaluate to true in this case, because the value from <a>, "abc", is used in the
evaluation.

This conditional processing, using column names and $DECOMP_CONTENT, can be useful in cases
where you want to decompose only a value based on the value of another element or attribute that will
not be inserted into the database.

Conditions specified on mapped elements or attributes absent from the document

If a condition is specified on an element or attribute, but that element or attribute does not appear in the
XML document, then the condition is still applied. For example, consider the following element mapping
from an annotated schema document:
<xs:element name="intElem" type="xs:integer"

db2-xdb:rowSet="rowSetA" db2-xdb:column="colInt"
db2-xdb:condition="colInt > 100" default="0" />

If the <intElem> element does not appear in the XML document, the condition "colInt > 100" is still
evaluated. Because <intElem> does not appear, a default value of 0 is used in the condition evaluation for

SQL XML programming 87

|

|
|
|
|
|
|
|

|

|
|
|
|

|
|
|
|

|
|

|
|

|
|
|

|
|
|
|

|

|
|

|
|

|
|
|

|

|
|
|

|
|
|

|
|

"colInt". The condition is then evaluated as: 0 > 100, which evaluates to false. The corresponding row is
therefore not inserted during decomposition.

Example

Consider the following <author> element from an XML document:
<author ID="0800">

<firstname>Alexander</firstname>
<lastname>Smith</lastname>
<activeStatus>1</activeStatus>

</author>

Depending on the conditions specified by db2-xdb:condition, the values from this <author> element
might or might not be inserted into the target tables during decomposition. Two cases are presented next.

All conditions satisfied

The following section from the annotated schema that corresponds to the <author> element above,
specifies that this element should only be decomposed if the author's ID falls between 1 and 999, the
<firstname> and <lastname> elements are not NULL, and the value of the <activeStatus> element equals
1:
<xs:element name="author">

<xs:complexType>
<xs:sequence>

<xs:element name="firstname" type="xs:string"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="GIVENNAME"
db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL" />

<xs:element name="lastname" type="xs:string"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"
db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL" />

<xs:element name="activeStatus" type="xs:integer"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="statusCode"
db2-xdb:condition="$DECOMP_CONTENT=1" />

<xs:attribute name="ID" type="xs:integer"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"
db2-xdb:condition="$DECOMP_CONTENT BETWEEN 1 and 999 />

</xs:sequence>
</xs:complexType>

</xs:element>

Because all of the conditions specified by db2-xdb:condition are satisfied by the values in the example
<author> element above, the AUTHORS table is populated with the data from the <author> element.

Table 16. AUTHORS

AUTHID GIVENNAME SURNAME STATUSCODE NUMBOOKS

0800 Alexander Smith 1 NULL

One condition fails

The following annotated schema specifies that the <author> element should only be decomposed if the
author's ID falls between 1 and 100, and the <firstname> and <lastname> elements are not NULL:
<xs:element name="author">

<xs:complexType>
<xs:sequence>

<xs:element name="firstname" type="xs:string"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="GIVENNAME"
db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL" />

<xs:element name="lastname" type="xs:string"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"

88 IBM i: SQL XML Programming

|
|

|

|

|
|
|
|
|

|
|

|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

||

|||||

|||||
|

|

|
|

|
|
|
|
|
|
|
|

db2-xdb:condition="$DECOMP_CONTENT IS NOT NULL"/>
<xs:element name="activeStatus" type="xs:integer" />
<xs:attribute name="ID" type="xs:integer"

db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"
db2-xdb:condition="$DECOMP_CONTENT BETWEEN 1 and 100" />

</xs:sequence>
</xs:complexType>

</xs:element>

Although the <firstname> and <lastname> elements of the example <author> element meet the
conditions specified, the value of the ID attribute does not, and so the entire row is not inserted during
decomposition. This is because the logical AND of all three conditions specified on the AUTHORS table
is evaluated. In this case, one of the conditions is false, and so the logical AND evaluates to false, and
therefore, no rows are inserted.

db2-xdb:contentHandling decomposition annotation
The db2-xdb:contentHandling annotation specifies the type of content that will be decomposed into a
table for an element of complex type or simple type.

Annotation type

Attribute of <xs:element>, or attribute of <db2-xdb:rowSetMapping>, that applies to complex type or
simple type element declarations

How to specify

db2-xdb:contentHandling is specified in any of the following ways (where value represents a valid value
for the annotation):
v <xs:element db2-xdb:contentHandling="value" />
v <db2-xdb:rowSetMapping db2-xdb:contentHandling="value">

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following case-sensitive tokens:
v text
v stringValue
v serializeSubtree

Details

The db2-xdb:contentHandling annotation, specified as an attribute in the declaration of an XML element,
indicates what value is to be inserted into the tables and columns specified by db2-xdb:rowSet and
db2-xdb:column, respectively, during decomposition.

The three valid values for db2-xdb:contentHandling are:

text

v What is inserted: the concatenation of character data (including character content of CDATA
sections) within this element.

SQL XML programming 89

|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|

|
|

|

|
|

|
|
|
|
|

|

|

|

|

|

|

|

|

|
|
|

|

|

|
|

v What is excluded: this element's comments and processing instructions, CDATA section
delimiters ("<![CDATA[" "]]>"), as well as this element's descendants (including tags and
content).

stringValue

v What is inserted: the concatenation of this element's character data (including character content
of CDATA sections) with the character data in this element's descendants, in document order.

v What is excluded: comments, processing instructions, CDATA section delimiters ("<![CDATA["
"]]>"), and the start and end tags of this element's descendants.

serializeSubtree

v What is inserted: the markup of everything between this element's start and end tags,
including this element's start and end tags. This includes comments, processing instructions,
and CDATA section delimiters ("<![CDATA[" "]]>").

v What is excluded: nothing.
v Notes: The serialized string that is inserted might not be identical to the corresponding section

in the XML document because of factors such as: default values specified in the XML schema,
expansion of entities, order of attributes, whitespace normalization of attributes, and processing
of CDATA sections.
Because the serialized string that results from this setting is an XML entity, there are CCSID
issues that should be considered. If the target column is of character or graphic types, the XML
fragment is inserted in the column's CCSID. When such an entity is passed by an application
to an XML processor, the application must explicitly inform the processor of the entity's
encoding, because the processor would not automatically detect encodings other than UTF-8. If
the target column is of type BLOB, however, then the XML entity is inserted in UTF-8
encoding. In this case, the XML entity can be passed to the XML processor without needing to
specify an encoding.

If an XML element declaration that is annotated for decomposition is of complex type and contains
complex content but does not have db2-xdb:contentHandling specified, then the default behavior follows
the "serializeSubtree" setting. For all other cases of annotated element declarations, the default behavior if
db2-xdb:contentHandling is not specified follows the "stringValue" setting.

If an element is declared to be of complex type and has an element-only or empty content model (that is,
the "mixed" attribute of the element declaration is not set to true or 1), then db2-xdb:contentHandling
cannot be set to "text".

Specifying the db2-xdb:contentHandling annotation on an element does not affect the decomposition of
any of the element's descendants.

The setting of db2-xdb:contentHandling affects the value that is substituted for $DECOMP_CONTENT in
either of the db2-xdb:expression or db2-xdb:condition annotations. The substituted value is first processed
according to the db2-xdb:contentHandling setting, before it is passed for evaluation.

Example

The following example illustrates how the different settings of the db2-xdb:contentHandling annotation
can be used to yield different results in the target table. The annotated schema is presented first, showing
how the <paragraph> element is annotated with db2-xdb:contentHandling. (The annotated schema is
presented only once, with db2-xdb:contentHandling set to "text". Subsequent examples in this section
assume the same annotated schema, which differ only by the value db2-xdb:contentHandling is set to.)
<xs:schema>

<xs:element name="books">
<xs:complexType>

<xs:sequence>
<xs:element name="book">

90 IBM i: SQL XML Programming

|
|
|

|

|
|

|
|

|

|
|
|

|

|
|
|
|

|
|
|
|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|
|

|

|
|
|
|
|

|
|
|
|
|

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer" />
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="ISBN" />
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

<xs:complexType name="chapterType">
<xs:sequence>

<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"
db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTCONTENT"
db2-xdb:contentHandling="text" />

</xs:sequence>
<xs:attribute name="number" type="xs:integer"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTNUM" />
<xs:attribute name="title" type="xs:string"

db2-xdb:rowSet="BOOKCONTENTS" db2-xdb:column="CHPTTITLE" />
</xs:complexType>

<xs:complexType name="paragraphType" mixed="1">
<xs:choice>

<xs:element name="b" type="xs:string" minOccurs="0" maxOccurs="unbounded" />
</xs:choice>

</xs:complexType>
</xs:schema>

The <books> element that is being mapped is presented next.
<books>

<book isbn="1-11-111111-1" title="My First XML Book">
<authorID>22</authorID>
<chapter number="1" title="Introduction to XML">

<paragraph>XML is lots of fun...</paragraph>
</chapter>
<chapter number="2" title="XML and Databases">

<paragraph><!-- Start of chapter -->XML can be used with...</paragraph>
<paragraph><?processInstr example?>

Escape characters such as <![CDATA[<, >, and &]]>...</paragraph>
</chapter>
...
<chapter number="10" title="Further Reading">

<paragraph>Recommended tutorials...</paragraph>
</chapter>

</book>
...

<books>

The next three tables show the result of decomposing the same XML element with differing values for
db2-xdb:contentHandling.

Note: The resulting tables below contain quotation marks around the values in the CHPTTITLE and
CHPTCONTENT columns. These quotation marks do not exist in the columns, but are presented here
only to show the boundaries and whitespaces of the inserted strings.

SQL XML programming 91

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|

db2-xdb:contentHandling="text"

Table 17. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 "Introduction to XML" "XML is fun..."

1-11-111111-1 2 "XML and Databases" "XML can be used with..."

1-11-111111-1 2 "XML and Databases" "

Escape characters such as <, >,
and & ..."

...

1-11-111111-1 10 "Further Reading" "Recommended tutorials..."

Observe how the content of the element of the first paragraph of chapter 1 is not inserted when the
"text" setting is used. This is because the "text" setting excludes any content from descendants. Notice also
that the comment and processing instruction from the first paragraph of chapter 2 are excluded when the
"text" setting is used. Whitespace from the concatenation of character data from the <paragraph>
elements is preserved.

db2-xdb:contentHandling="stringValue"

Table 18. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 "Introduction to XML" "XML is lots of fun..."

1-11-111111-1 2 "XML and Databases" "XML can be used with..."

1-11-111111-1 2 "XML and Databases" "

Escape characters such as <, >,
and & ..."

...

1-11-111111-1 10 "Further Reading" "Recommended tutorials..."

The difference between this table and the previous table is found in the CHPTCONTENT column of the
first row. Notice how the string "lots of", which comes from the descendant of the <paragraph>
element, has been inserted. When db2-xdb:contentHandling was set to "text", this string was excluded,
because the "text" setting excludes the content of descendants. The "stringValue" setting, however,
includes content from descendants. Like the "text" setting, comments and processing instructions are not
inserted, and whitespace is preserved.

db2-xdb:contentHandling="serializeSubtree"

Table 19. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 1 "Introduction to XML" "<paragraph>XML is lots of
fun...</paragraph>"

1-11-111111-1 2 "XML and Databases" "<paragraph><!-- Start of chapter -->XML
can be used with...</paragraph>"

92 IBM i: SQL XML Programming

|

||

||||

||||

||||

||||

|
|

||||

||||
|

|
|
|
|
|

|

||

||||

||||

||||

||||

|
|

||||

||||
|

|
|
|
|
|
|

|

||

||||

||||
|

||||
|

Table 19. BOOKCONTENTS (continued)

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 2 "XML and Databases" "<paragraph><?processInstr example?>

Escape characters such as
<![CDATA[<, >, and &]]>...</paragraph>"

...

1-11-111111-1 10 "Further Reading" "<paragraph>Recommended
tutorials...</paragraph>"

The difference between this table and the previous two tables is that all markup from the descendants of
<paragraph> elements are inserted (including the <paragraph> start and end tags). This includes the
start and end tags in the CHPTCONTENT column of the first row, as well as the comment and
processing instruction in the second and third rows, respectively. As in the previous two examples,
whitespace from the XML document has been preserved.

db2-xdb:normalization decomposition annotation
The db2-xdb:normalization annotation specifies the normalization of whitespace in the XML data to be
inserted or to be substituted for $DECOMP_CONTENT (when used with db2-xdb:expression).

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-xdb:rowSetMapping>>

How to specify

db2-xdb:normalization is specified in any of the following ways (where value represents a valid value for
the annotation):
v <xs:element db2-xdb:normalization="value" />

v <xs:attribute db2-xdb:normalization="value" />
v <db2-xdb:rowSetMapping> db2-xdb:normalization="value">

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following case-sensitive tokens:

canonical
Before the XML value is inserted into the target column, or is substituted for occurrences of
$DECOMP_CONTENT that are in the same mapping as this db2-xdb:normalization annotation,
the XML value is converted to its canonical form according to its XML schema type.

original
Before the XML value is inserted into the target column, or is substituted for occurrences of
$DECOMP_CONTENT that are in the same mapping as this db2-xdb:normalization annotation,
no modification of the XML is done except for possible processing by an XML parser. This is the
default.

SQL XML programming 93

|

||||

||||

|
|

||||

||||
|
|

|
|
|
|
|

|
|
|

|

|

|

|
|

|

|
|
|
|
|

|

|

|

|

|
|
|
|

|
|
|
|
|

whitespaceStrip
Before the XML value is inserted into the target column, or is substituted for occurrences of
$DECOMP_CONTENT that are in the same mapping as this db2-xdb:normalization annotation:
v All leading and trailing whitespace is removed from the XML value.
v Consecutive whitespace is collapsed into a single whitespace character.

Details

db2-xdb:normalization is applicable when an element or attribute has one of the following atomic XML
schema types:
v byte, unsigned byte
v integer, positiveInteger, negativeInteger, nonPositiveInteger, nonNegativeInteger
v int, unsignedInt
v long, unsignedLong
v short, unsignedShort
v decimal
v float
v double
v boolean
v time
v date
v dateTime

The target column must have one of the following data types:
v CHAR
v VARCHAR
v CLOB
v DBCLOB
v GRAPHIC
v VARGRAPHIC

db2-xdb:normalization will be ignored if specified for any other types.

Example

The following example shows how whitespace normalization can be controlled with the
db2-xdb:normalization annotation. The annotated schema is presented first.

<xs:element name="author">
<xs:complexType>

<xs:sequence>
<xs:element name="firstname" type="xs:string"

db2-xdb:rowSet="AUTHORS" db2-xdb:column="FIRSTNAME" />
<xs:element name="lastname" type="xs:string"

db2-xdb:rowSet="AUTHORS" db2-xdb:column="SURNAME"
db2-xdb:normalization="whitespaceStrip" />

<xs:element name="activeStatus" type="xs:boolean"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="ACTIVE"
db2-xdb:normalization="canonical" />

<xs:attribute name="ID" type="xs:integer"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="AUTHID"

94 IBM i: SQL XML Programming

|
|
|

|

|

|

|
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

db2-xdb:normalization="whitespaceStrip" />
</xs:sequence>

</xs:complexType>
</xs:element>

The <author> element that is being mapped is presented next (notable whitespaces are represented below
by the '_' underscore character for the purpose of demonstration), followed by the resulting AUTHORS
table after the decomposition has completed.
<author ID="__22">

<firstname>Ann</firstname>
<lastname>__Brown_</lastname>
<activeStatus>1</activeStatus>

</author>

Table 20. AUTHORS

AUTHID FIRSTNAME SURNAME ACTIVE NUMBOOKS

22 Ann __Brown_ true NULL

The db2-xdb:normalization="whitespaceStrip" annotation on the ID attribute causes the leading and
trailing whitespace to be removed before the data is inserted into the AUTHORS table. The
db2-xdb:normalization.="canonical" annotation on the <activeStatus> element causes its boolean value to
be replaced with the canonical representation of that value before insertion into the AUTHORS table. The
element has a boolean type. The canonical representation of a boolean type is true or false.

db2-xdb:order decomposition annotation
The db2-xdb:order annotation specifies the insertion order of rows among different tables.

Annotation type

Child element of <db2-xdb:rowSetOperationOrder>.

How to specify

db2-xdb:order is specified in the following way (where value represents a valid value for the annotation):
<xs:schema>

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetOperationOrder>
<db2-xdb:order>

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:order>
</db2-xdb:rowSetOperationOrder>

</xs:appinfo>
</xs:annotation>
...

</xs:schema>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported children elements of <db2-xdb:order>:

db2-xdb:rowSet
Specifies an XML element or attribute mapping to a target base table.

SQL XML programming 95

|
|
|
|

|
|
|

|
|
|
|
|

||

|||||

|||||
|

|
|
|
|
|

|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|

Details

The db2-xdb:order annotation is used to define the order of insertion of the rows belonging to a given
rowSet, relative to the rows belonging to another rowSet. This enables XML data to be inserted into target
tables in a way consistent with any referential integrity constraints defined on the tables as part of the
relational schema. The number of db2-xdb:rowSet elements that can appear in db2-xdb:order element can
be any number greater than 1.

All rows of a given rowSet RS1 are inserted before any rows belonging to another rowSet RS2 if RS1 is
listed before RS2 within db2-xdb:order. Multiple instances of this element can be specified in order to
define multiple insert order hierarchies. For rowSets that do not appear in any element, their rows may
be inserted in any order, relative to the rows of any other rowSet. Also, the content of each
<db2-xdb:rowSet> element must be either an explicitly defined rowSet or the name of an existing table
for which no explicit rowSet declaration was made.

Multiple rowSet insertion hierarchies can be defined, though a rowSet can appear in only one instance of
the <db2-xdb:order> element, and it can appear only once within that element.

For delimited SQL identifiers specified in the children elements, the quotation marks delimiter must be
included in the character content and need not be escaped. The ‘&' and ‘<' characters used in SQL
identifiers, however, must be escaped.

Example

The following example demonstrates the use of the db2-xdb:order annotation.
<xs:schema>

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetOperationOrder>
<db2-xdb:order>

<db2-xdb:rowSet>CUSTOMER</db2-xdb:rowSet>
<db2-xdb:rowSet>PURCHASE_ORDER</db2-xdb:rowSet>

</db2-xdb:order>
<db2-xdb:order>

<db2-xdb:rowSet>ITEMS_MASTER</db2-xdb:rowSet>
<db2-xdb:rowSet>PO_ITEMS</db2-xdb:rowSet>

</db2-xdb:order>
</db2-xdb:rowSetOperationOrder>

</xs:appinfo>
</xs:annotation>

</xs:schema>

Two disjoint hierarchies for order of insertion are specified in the above example. The first hierarchy
specifies that all content for the CUSTOMER rowSet or table is inserted prior to any content collected for
PURCHASE_ORDER, and the second hierarchy specifies that all content for the ITEMS_MASTER rowSet
or table will be inserted before any content is inserted into PO_ITEMS. Note that the order between the
two hierarchies is undefined. For example, any content for the PURCHASE_ORDER rowSet or table may
be inserted before or after any content is inserted into ITEMS_MASTER

db2-xdb:truncate decomposition annotation
The db2-xdb:truncate annotation specifies whether truncation is permitted when an XML value is inserted
into a character target column.

Annotation type

Attribute of <xs:element> or <xs:attribute>, or attribute of <db2-xdb:rowSetMapping>>

96 IBM i: SQL XML Programming

|

|
|
|
|
|

|
|
|
|
|
|

|
|

|
|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|

|

|

How to specify

db2-xdb:truncate is specified in any of the following ways (where value represents a valid value for the
annotation):
v <xs:element db2-xdb:truncate="value" />

v <xs:attribute db2-xdb:truncate="value" />
v <db2-xdb:rowSetMapping> db2-xdb:truncate="value">

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid values

One of the following values:

0 or false
The value cannot be truncated before insertion, If the value is too long, an error occurs and the
value is not inserted. This is the default.

1 or true
The value can be truncated before insertion.

Details

An XML value being inserted into a target character column might be larger than the column size; in this
case, the value must be truncated for a successful decomposition. The db2-xdb:truncate attribute indicates
whether or not truncation will be permitted when the value is too large for the target column. If this
attribute is set to "false" or "0", to indicate that truncation is not permitted, and the XML value being
inserted is too large for the target column, an error occurs during decomposition of the XML document
and the value is not inserted. The "true" or "1" setting indicates that data truncation is allowed during
insertion.

db2-xdb:truncate is applicable only for the following mappings:

XML data type Column data type

Any compatible type CHAR
VARCHAR
CLOB
GRAPHIC
VARGRAPHIC
DBCLOB

xs:date DATE

xs:time TIME

xs:dateTime TIMESTAMP

If the db2-xdb:expression annotation is specified on the same element or attribute declaration as
db2-xdb:truncate, then the value of db2-xdb:truncate is ignored, as the expression can perform truncation
if it is defined as such.

For an annotations that decompose XML datatime values into DATE, TIME, or TIMESTAMP columns, if
the XML data can have a timezone, db2-xdb:truncate must be set to "true" or "1".

SQL XML programming 97

|

|
|

|

|
|
|
|
|

|

|

|

|

|
|
|

|
|

|

|
|
|
|
|
|
|

|

|||

||
|
|
|
|
|

||

||

||
|

|
|
|

|
|

Example

The following example shows how truncation can be applied to an <author> element. A section of the
annotated schema is presented first.
<xs:element name="author">

<xs:complexType>
<xs:sequence>

<xs:element name="firstname" type="xs:string"
db2-xdb:rowSet="AUTHORS" db2-xdb:column="FIRSTNAME"
db2-xdb:truncate="true" />

<xs:element name="lastname" type="xs:string" />
<xs:element name="activeStatus" type="xs:boolean" />
<xs:element name="activated" type="xs:date"

db2-xdb:truncate="true" />
<xs:attribute name="ID" type="xs:integer" />

<xs:sequence>
</xs:complexType>

</xs:element>

The <author> element that is being mapped is presented next.
<author ID="0800">

<firstname>Alexander</firstname>
<lastname>Smith</lastname>
<activeStatus>0</activeStatus>
<activated>2001-10-31Z</activated>

</author>

Assume that the FIRSTNAME column was defined as a CHAR SQL type of size 7, and that the
ACTIVEDATE column was defined as a DATE SQL type. The AUTHORS table that results after the
decomposition has completed is presented next.

Table 21. AUTHORS

AUTHID FIRSTNAME SURNAME ACTIVE ACTIVEDATE NUMBOOKS

NULL Alexand NULL NULL 2001-10-31 NULL

Because the <firstname> value "Alexander" is larger than the SQL column size, truncation is necessary in
order to insert the value. Notice also that because the <activated> element contained a timezone in the
XML document, db2-xdb:truncate was set to "true" to ensure the date was successfully inserted during
decomposition.

Because truncation is required in order to insert the value from the <firstname> element or the
<activated> element, if db2-xdb:truncate was not specified, then the default value of db2-xdb:truncate is
assumed (truncation not permitted), and an error would have been generated to indicate that a row has
not been inserted.

db2-xdb:rowSetMapping decomposition annotation
The db2-xdb:rowSetMapping annotation maps an XML element or attribute to a single target table and
column to multiple target columns of the same table or to multiple tables and columns.

Annotation type

Child element of <xs:appinfo> (which is a child element of <xs:annotation>) that is a child element of
<xs:element> or <xs:attribute>

How to specify

db2-xdb:rowSetMapping is specified in any of the following ways (where value represents a valid value
for the annotation):

98 IBM i: SQL XML Programming

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|
|
|
|
|

|
|
|

||

||||||

||||||
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|

|

|
|

v <xs:element>
<xs:annotation>

<xs:appinfo>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
...

</xs:element>
v <xs:attribute>

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
...

</xs:attribute>

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported attributes of <db2-xdb:rowSetMapping>:

db2-xdb:contentHandling
Enables specification of the type of content that will be decomposed into a table for an element
that is of complex type.

db2-xdb:locationPath
Enables mapping of an XML element or attribute declared as part of a reusable group, to
different table and column pairs, depending on the ancestry of the element or attribute.

db2-xdb:normalization
Enables specification of the normalization behavior for the content of the XML element or
attribute mapped to a character target column, before the content is inserted.

db2-xdb:truncate
Enables specification of whether truncation is permitted when an XML value is inserted into a
character target column.

The following are supported children elements of <db2-xdb:rowSetMapping>, listed in the order in which
they must appear if they are specified:

<db2-xdb:rowSet>
Maps an XML element or attribute to a target base table.

<db2-xdb:column>
Maps an XML element or attribute to a base table column. This element is optional if
db2-xdb:condition or db2-xdb:locationPath annotation is present.

<db2-xdb:expression>
Specifies a customized expression, the result of which is inserted into the table named by the
db2-xdb:rowSet attribute. This element is optional.

<db2-xdb:condition>
Specifies a condition or evaluation. This element is optional.

SQL XML programming 99

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|

|
|
|

|
|
|

|
|
|

|
|

|
|

|
|
|

|
|
|

|
|

Details

If db2-xdb:expression and db2-xdb:truncate are specified together, db2-xdb:truncate is ignored.

For mapping to a single table and column, specification of db2-xdb:rowSetMapping is equivalent to
specifying a combination of db2-xdb:rowSet and db2-xdb:column annotations.

All whitespace in the character content of the child elements of <db2-xdb:rowSetMapping> is significant;
no whitespace normalization is performed. For delimited SQL identifiers specified in the children
elements, the quotation marks delimiter must be included in the character content and not escaped. The
‘&' and ‘<' characters used in SQL identifiers, however, must be escaped.

Example

The following example shows how a single attribute, named "isbn", can be mapped to more than one
table with the <db2-xdb:rowSetMapping> annotation. A section of the annotated schema is presented
first. It shows how the isbn value is mapped to both the BOOKS and BOOKCONTENTS tables.
<xs:element name="book">

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer"/>
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string">

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>BOOKS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

The <book> element that is being mapped is presented next, followed by the resulting BOOKS and
BOOKCONTENTS tables after the decomposition has completed.
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<!-- this book does not have a preface -->
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
...

</chapter>
...

</book>

Table 22. BOOKS

ISBN TITLE CONTENT

1-11-111111-1 NULL NULL

100 IBM i: SQL XML Programming

|

|

|
|

|
|
|
|

|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|
|
|
|
|
|
|
|
|

||

|||

|||
|

Table 23. BOOKCONTENTS

ISBN CHPTNUM CHPTTITLE CHPTCONTENT

1-11-111111-1 NULL NULL NULL

Alternative mapping using combination of <db2-xdb:rowSetMapping> and db2-xdb:rowSet
and db2-xdb:column

The following section of an annotated schema is equivalent to the XML schema fragment presented
above, as it yields the same decomposition results. The difference between the two schemas is that this
schema replaces one mapping with the db2-xdb:rowSet and db2-xdb:column combination, instead of
using only the <db2-xdb:rowSetMapping> annotation.
<xs:element name="book">

<xs:complexType>
<xs:sequence>

<xs:element name="authorID" type="xs:integer"/>
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded" />

</xs:sequence>
<xs:attribute name="isbn" type="xs:string"

db2-xdb:rowSet="BOOKS" db2-xdb:column="ISBN" >
<xs:annotation>

<xs:appinfo>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>BOOKCONTENTS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>
<xs:attribute name="title" type="xs:string" />

</xs:complexType>
</xs:element>

db2-xdb:rowSetOperationOrder decomposition annotation
The db2-xdb:rowSetOperationOrder annotation is a parent for one or more db2-xdb:order elements. See
the section for db2-xdb:order for details on usage in defining order of insertion of rows among different
tables.

Annotation type

Child element of <xs:appinfo> that is a child of a global <xs:annotation> element.

How to specify

db2-xdb:rowSetOperationOrder is specified in the following way (where value represents a valid value for
the annotation):
<xs:schema>

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetOperationOrder>
<db2-xdb:order>

<db2-xdb:rowSet>value</db2-xdb:rowSet>
...

</db2-xdb:order>
</db2-xdb:rowSetOperationOrder>

</xs:appinfo>
</xs:annotation>
...

</xs:schema>

SQL XML programming 101

||

||||

||||
|

|
|

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|

Namespace

http://www.ibm.com/xmlns/prod/db2/xdb1

Valid structure

The following are supported children elements of <db2-xdb:rowSetOperationOrder>:

db2-xdb:order

Details

<db2-xdb:rowSetOperationOrder> groups together <db2-xdb:order> elements. Multiple instances of the
child <db2-xdb:order> element can be present, allowing the definition of multiple insertion hierarchies.

By allowing you to control the order in which contents of XML documents are inserted, the
db2-xdb:rowSetOperationOrder and db2-xdb:order annotations together provide a way to ensure that the
XML schema decomposition process respects any referential integrity constraints on target tables, as well
as any other application requirements that rows of a table be inserted before rows of another table.

The db2-xdb:rowSetOperationOrder annotation can appear only once in an XML schema.

Example

See “db2-xdb:order decomposition annotation” on page 95 for examples of specifying the order of rowSet
insertion.

Keywords for annotated XML schema decomposition
Annotated XML schema decomposition offers decomposition keywords for use in the db2-xdb:condition
and db2-xdb:expression annotations.

$DECOMP_CONTENT
The value of the mapped XML element or attribute from the document. The value is constructed
according to the setting of the db2-xdb:contentHandling annotation. The value of
$DECOMP_CONTENT has a character type.

$DECOMP_CONTENT can be used to process the value of the mapped element or attribute,
using customized expressions, rather than directly inserting that value.

If db2-xdb:expression specifies $DECOMP_CONTENT and db2-xdb:normalization is specified in
the same mapping, the $DECOMP_CONTENT value for db2-xdb:expression is normalized before
it is passed to the expression for evaluation.

$DECOMP_DOCUMENTID
The string value specified in the documentid input parameter of the XDBDECOMPXML stored
procedure, which identifies the XML document that is being decomposed. When the document is
decomposed, the input value that is provided to the stored procedure is used as the value
substituted for $DECOMP_DOCUMENTID.

$DECOMP_DOCUMENTID can be used to insert unique identifiers that are not present in the
XML document. Applications can pass uniquely generated document IDs into
XDBDECOMPXML. These IDs can then be directly inserted into a table in the database. The IDs
can also be passed into expressions that generate unique identifiers for elements or attributes.

102 IBM i: SQL XML Programming

|

|

|

|

|

|

|
|

|
|
|
|

|

|

|
|

|
|
|

|
|
|
|

|
|

|
|
|

|
|
|
|
|

|
|
|
|

Treatment of CDATA sections in annotated XML schema
decomposition
If elements that are annotated for decomposition contain CDATA sections, the decomposition process
inserts the contests of the CDATA sections into tables, without the CDATA section delimiters
("<![CDATA[" and "]]>").

Carriage return and line feed pairs (U+000D and U+000A) or carriage returns (U+000D) within the
CDATA section are replaced with line feeds (U+000A).

If the XML element declaration in the XML schema is annotated with the attribute db2-
xdb:contentHandling="serializeSubtree", the contents of the CDATA section are inserted into tables with
the following changes:
v CDATA section delimiters ("<![CDATA[" and "]]>") are removed.
v Each ampersand (&) in the CDATA section is replaced by the string &:.
v Each left angle bracket (<) in the CDATA section is replaced by the string <:.

The content of the CDATA section after decomposition is logically equivalent to the original content of
the CDTATA section.

NULL values and empty strings in annotated XML schema
decomposition
Annotated XML schema decomposition inserts NULL values or empty strings under certain conditions.

XML elements

The following table shows when an empty string or a NULL value is inserted into the database for
elements in the XML document.

Table 24. NULL handling for mapped elements

Condition Empty string NULL value

Element missing from document X

Element satisfies all of the following conditions:

v is present in the document

v contains the xsi:nil="true" or xsi:nil="1" attribute
in the start tag

X

Element satisfies all of the following conditions:

v is present and empty in the document

v does not contain the xsi:nil="true" or xsi:nil="1"
attribute in the start tag

v is derived from or declared to be of list type, union
type, complex type with mixed content, or the
following atomic built-in types: xsd:string,
xsd:normalizedString, xsd:token, xsd:hexBinary,
xsd:base64Binary, xsd:anyURI, xsd:anySimpleType;
any other types will result in an error.

X

Note:

1. If a mapping involves the db2-xdb:condition or db2-xdb:expression annotations, then the empty string or NULL
value (as shown in this table) is passed as the argument for expression evaluation.

2. If a target column is of type CHAR or GRAPHIC, an empty string is inserted as a string of blank characters.

SQL XML programming 103

|

|

|
|
|

|
|

|
|
|

|

|

|

|
|

|

|

|

|

|
|

||

|||

|||

|

|

|
|

||

|

|

|
|

|
|
|
|
|
|

||

|

|
|

|
|

XML attributes

The following table shows when an empty string or a NULL value is inserted into the database when
XML attributes annotated for decomposition contain NULL values in the document or are missing.

Table 25. NULL handling for mapped attributes

Condition Empty string NULL value

Attribute missing from document (either because no
validation was performed, or there was no default value
provided by validation)

X

Attribute satisfies all of the following conditions:

v is present and empty in the document

v is derived from or declared to be of list type, union
type, or the following atomic built-in types:
xsd:string, xsd:normalizedString, xsd:token,
xsd:hexBinary, xsd:base64Binary, xsd:anyURI,
xsd:anySimpleType; any other types will result in an
error.

X

Note: If a mapping involves the db2-xdb:condition or db2-xdb:expression annotations, then the empty string or
NULL value (as shown in this table) is passed as the argument for expression evaluation.

Checklist for annotated XML schema decomposition
Annotated XML schema decomposition can become complex. To make the task more manageable, you
should take several things into consideration.

Annotated XML schema decomposition requires you to map possibly multiple XML elements and
attributes to multiple columns and tables in the database. This mapping can also involve transforming
the XML data before inserting it, or applying conditions for insertion.

The following are items to consider when annotating your XML schema, along with pointers to related
documentation:
v Understand what decomposition annotations are available to you.
v Ensure, during mapping, that the type of the column is compatible with the XML schema type of the

element or attribute it is being mapped to.
v Ensure complex types derived by restriction or extension are properly annotated.
v Confirm that no decomposition limits and restrictions are violated.
v Ensure that the tables and columns referenced in the annotation exist at the time the schema is

registered with the XSR.

Examples of mappings in annotated XML schema decomposition
Annotated XML schema decomposition relies on mappings to determine how to decompose an XML
document into tables. Mappings are expressed as annotations added to the XML schema document. These
mappings describe how you want an XML document to be decomposed into tables. The following
examples show some common mapping scenarios.

Common mapping scenarios:

Annotations of derived complex types
XML schemas can contain complex types that are derived by restriction or extension (specified by
complexType elements that include restriction or extension elements).

When you annotate those complex types for decomposition, you need to apply additional mappings.

104 IBM i: SQL XML Programming

|

|
|

||

|||

|
|
|

||

|

|

|
|
|
|
|
|

||

|
|
|

|

|
|

|
|
|

|
|

|

|
|

|

|

|
|

|

|
|
|
|

|

|
|
|

|

If a complex type is referred to in multiple places in an XML schema, you can map it to different tables
and columns depending on its location in the schema, using the db2-xdb:locationPath annotation.

Complex types that are derived by restriction require that the common elements and attributes from the
base type are repeated in the definition of the derived type. Therefore, decomposition annotations that are
present in the base type must also be included in the derived type.

In the definition of complex types that are derived by extension, only the elements and attributes that are
in addition to the base type are specified. If the decomposition mappings for the derived type differ from
the mappings of the base type, you must add decomposition annotations to the base type to clearly
differentiate the mappings of the base from the derived types.

Example: In the following XML schema document, outOfPrintBookType is derived by extension. It is
mapped to a different table than its base type, which is bookType. The db2-xdb:locationPath annotation is
specified in the bookType base type to clearly differentiate which mappings apply to the base type, and
which apply to the derived type. The <lastPublished> and <publisher> elements of the derived type
outOfPrintType do not require the db2-xdb:locationPath annotation in this example, because these
elements are involved in only a single mapping.
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">
<xs:annotation>

<xs:appinfo>
<db2-xdb:table>

<db2-xdb:name>BOOKS</db2-xdb:name>
<db2-xdb:rowSet>inPrintRowSet</db2-xdb:rowSet>

</db2-xdb:table>
<db2-xdb:table>

<db2-xdb:name>OUTOFPRINT</db2-xdb:name>
<db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>

</xs:annotation>
<xs:element name="books">

<xs:complexType>
<xs:choice> Note 1

<xs:element name="book" type="bookType"
minOccurs="0" maxOccurs="unbounded"/>

<xs:element name="outOfPrintBook" type="outOfPrintBookType"
minOccurs="0" maxOccurs="unbounded"/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:complexType name="bookType">

<xs:sequence>
<xs:element name="authorID" type="xs:integer"/>
<xs:element name="chapter" type="chapterType" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" Note 2a

db2-xdb:locationPath="/books/book/@title"
db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="TITLE">

<xs:annotation>
<xs:appinfo>
<db2-xdb:rowSetMapping db2-xdb:locationPath="/books/outOfPrintBook/@title">

<db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>
<db2-xdb:column>TITLE</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>
<xs:attribute name="isbn" type="xs:string" Note 2b

db2-xdb:locationPath="/books/book/@isbn"
db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="ISBN">

<xs:annotation>

SQL XML programming 105

|
|

|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xs:appinfo>
<db2-xdb:rowSetMapping db2-xdb:locationPath="/books/outOfPrintBook/@isbn">

<db2-xdb:rowSet>outOfPrintRowSet</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

</xs:complexType>
<xs:complexType name="outOfPrintBookType">

<xs:complexContent>
<xs:extension base="bookType">

<xs:sequence>
<xs:element name="lastPublished" type="xs:date" Note 3

db2-xdb:rowSet="outOfPrintRowSet" db2-xdb:column="LASTPUBDATE"/>
<xs:element name="publisher" type="xs:string"

db2-xdb:rowSet="outOfPrintRowSet" db2-xdb:column="PUBLISHER"/>
</xs:sequence>

</xs:extension>
</xs:complexContent>

</xs:complexType>
<xs:simpleType name="paragraphType">

<xs:restriction base="xs:string"/>
</xs:simpleType>
<xs:complexType name="chapterType">

<xs:sequence>
<xs:element name="paragraph" type="paragraphType" maxOccurs="unbounded"

db2-xdb:locationPath="/books/book/chapter/paragraph"
db2-xdb:rowSet="inPrintRowSet" db2-xdb:column="CONTENT">

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping
db2-xdb:locationPath="/books/outOfPrintBook/chapter/paragraph">
<db2-xdb:rowSet>outOfPrintBook</db2-xdb:rowSet>
<db2-xdb:column>CONTENT</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name="number" type="xs:integer"/>
<xs:attribute name="title" type="xs:string"/>

</xs:complexType>
</xs:schema>

The annotations indicate that values from the <book> element are decomposed into the BOOKS table,
and values from the <outOfPrintBook> element will be decomposed into the OUTOFPRINT table.

Notes for the annotated XML schema document:

1 A <books> document can have two types of elements: a <book> element or an <outOfPrintBook>
element. Information from the two types of elements is decomposed into different tables. The
<outOfPrintBook> element definition has extensions to the <book> element definition.

2a and 2b
In the XML schema, the title and isbn attributes have the same definition for <book> elements
or <outOfPrintBook> elements, but in-print and out-of-print book information goes into different
tables. Therefore, you need db2-xdb:locationPath annotations to distinguish between titles and
ISBN numbers for in-print and out-of-print books.

3 The lastPublished and publisher elements are unique to <outOfPrintBook> elements, so no
db2-xdb:locationPath annotation is necessary for them.

Suppose that you use this XML schema document to decompose the following XML document:

106 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|

|

||
|
|

|
|
|
|
|

||
|

|

<books>
<book isbn="1-11-111111-1" title="My First XML Book">

<authorID>22</authorID>
<chapter number="1" title="Introduction to XML">

<paragraph>XML is fun...</paragraph>
</chapter>
<chapter number="2" title="XML and Databases">

<paragraph>XML can be used with...</paragraph>
</chapter>

</book>
<outOfPrintBook isbn="7-77-777777-7" title="Early XML Book">

<authorID>41</authorID>
<chapter number="1" title="Introductory XML">

<paragraph>Early XML...</paragraph>
</chapter>
<chapter number="2" title="What is XML">

<paragraph>XML is an emerging technology...</paragraph>
</chapter>
<lastPublished>2000-01-31</lastPublished>
<publisher>Early Publishers Group</publisher>

</outOfPrintBook>
</books>

The decomposition produces the following tables:

Table 26. BOOKS

ISBN TITLE CONTENT

1-11-111111-1 My First XML Book XML is fun...

1-11-111111-1 My First XML Book XML can be used with...

Table 27. OUTOFPRINT

ISBN TITLE CONTENT LASTPUBDATE PUBLISHER

7-77-777777-7 Early XML Book Early XML... 2000-01-31 Early Publishers Group

7-77-777777-7 Early XML Book XML is an emerging
technology...

2000-01-31 Early Publishers Group

Rowsets in annotated XML schema decomposition

The db2-xdb:rowSet annotation identifies the target table and row into which a value in an XML
document is decomposed.

The value of the db2-xdb:rowSet annotation can be a table name or a rowset name.

The db2-xdb:rowSet annotation can be an attribute of an element or attribute declaration, or a child of the
<db2-xdb:rowSetMapping> annotation.

In an XML schema, there can be multiple occurrences of an element or attribute, and all of those elements
or attributes can have a db2-xdb:rowSet annotation with the same target table value. Each of those
db2-xdb:rowSet annotations defines a row in the target table.

Example: Suppose that you want to decompose this document so that each book's isbn and title value is
inserted into the ALLPUBLICATIONS table.
<publications>

<textbook title="Programming with XML">
<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>

SQL XML programming 107

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||

|||

|||

|||
|

||

|||||

|||||

|||
|
||

|

|

|
|

|

|
|

|
|
|

|
|

|
|
|
|
|

<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>
<childrensbook title="Children’s Fables">

<isbn>5-55-555555-5</isbn>
<author>Bob Carter</author>
<author>Melanie Snowe</author>
<publicationDate>1999</publicationDate>

</childrensbook>
</publications>

You need to define the following rowsets:
v A rowset to group the isbn value for a textbook with its title
v A rowset to group the isbn value for a children's book with its title

The annotated XML schema look like this:
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1"
elementFormDefault="qualified" attributeFormDefault="unqualified">

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>admin</db2-xdb:defaultSQLSchema>
<db2-xdb:table>

<db2-xdb:name>ALLPUBLICATIONS</db2-xdb:name> Note 1
<db2-xdb:rowSet>textbk_rowSet</db2-xdb:rowSet>
<db2-xdb:rowSet>childrens_rowSet</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>

</xs:annotation>
<xs:element name="publications">

<xs:complexType>
<xs:sequence>

<xs:element name="textbook" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>
<xs:element name="isbn" type="xs:string" Note 2a

db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_ISBN"/>
<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear"/>
<xs:element name="university" type="xs:string"

maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"Note 2b

db2-xdb:rowSet="textbk_rowSet" db2-xdb:column="PUBS_TITLE"/>
</xs:complexType>

</xs:element>
<xs:element name="childrensbook" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="isbn" type="xs:string" Note 3a
db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_ISBN"/>

<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"Note 3b

db2-xdb:rowSet="childrens_rowSet" db2-xdb:column="PUBS_TITLE"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

</xs:schema>

Notes for the annotated XML schema document:

108 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|

|

|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

1 In the global <xs:annotation>, the textbk_rowSet rowset and the childrens_rowSet rowset are
declared for later reference in the XML schema. The <db2-xdb:name> annotation names the table
(ALLPUBLICATIONS) to which the rowsets refer.

2a and 2b
The textbk_rowSet annotation is specified on the isbn element declaration and the title attribute
declaration in the <textbook> element. This indicates that isbn and title information from
<textbook> elements gets decomposed into a row of the ALLPUBLICATIONS table.

3a and 3b
The childrens_rowSet annotation is specified on the isbn element declaration and the title
attribute declaration in the <childrensbook> element. This indicates that isbn and title information
from <childrensbook> elements gets decomposed into a row of the ALLPUBLICATIONS table.

The following table results from decomposing the previously shown document with the annotated XML
schema:

Table 28. ALLPUBLICATIONS

ISBN PUBS TITLE

0-11-011111-0 Programming with XML

5-55-555555-5 Children's Fables

The previous example shows a simple case of decomposing using rowsets. Rowsets can be used in more
complex mappings to group together multiple items from different parts of an XML schema to form rows
on the same table and column pair.

Conditional transformations

Rowsets let you apply different transformations to the values that are being decomposed, depending on
the values themselves.

Example: The following two instances of an element named temperature have different attribute values:
<temperature unit="Celsius">49</temperature>
<temperature unit="Farenheit">49</temperature>

If you decompose these values into the same table, you need to map all elements with the attribute
unit="Celsius" to one rowset and all elements with the attribute unit="Farenheit" to another rowset. Then
you can apply a conversion formula to values for one rowset so that all values are in the same
temperature units before you insert the values into the table.

The following annotated XML schema demonstrates this technique.
<db2-xdb:name>TEMPERATURE_DATA</db2-xdb:name>

<db2-xdb:rowSet>temp_celcius</db2-xdb:rowSet> Note 1
<db2-xdb:rowSet>temp_farenheit</db2-xdb:rowSet>

</db2-xdb:table>
...

<xs:element name="temperature">
<xs:annotation>

<xs:appinfo>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>temp_celcius</db2-xdb:rowSet>
<db2-xdb:column>col1</db2-xdb:column>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>temp_farenheit</db2-xdb:rowSet>
<db2-xdb:column>col1</db2-xdb:column>

<db2-xdb:expression>CAST(myudf_convertToCelcius(CAST($DECOMP_CONTENT AS FLOAT)) AS FLOAT)

SQL XML programming 109

||
|
|

|
|
|
|

|
|
|
|

|
|

||

||

||

||
|

|
|
|

|

|
|

|

|
|

|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</db2-xdb:expression> Note 2
</db2-xdb:rowSetMapping>

</xs:appinfo>
</xs:annotation>
<xs:complexType>

<xs:simpleContent>
<xs:extension base="xs:string">

<xs:attribute name="unit" type="xs:string">
<xs:annotation>

<xs:appinfo>
<db2-xdb:rowSetMapping> Note 3

<db2-xdb:rowSet>temp_celcius</db2-xdb:rowSet>
<db2-xdb:condition>$DECOMP_CONTENT = ’Celsius’</db2-xdb:condition>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>temp_farenheit</db2-xdb:rowSet>
<db2-xdb:condition>$DECOMP_CONTENT = ’Farenheit’</db2-xdb:condition>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

</xs:extension>
</xs:simpleContent>

</xs:complexType>
</xs:element>

Notes for the annotated XML schema document:

1 In the global <xs:annotation>, the temp_celcius rowset and the temp_farenheit rowset are
declared for later reference in the XML schema.

2 A conversion formula converts values in the temp_farenheit rowset to Celsius units so that all
values are in Celsius units when you insert them into a table. The expression annotation must
contain CAST specifications to cast the arguments and the return type of the function to the
corresponding SQL data types with which the function is defined.

3 All elements with the attribute unit="Celsius" are mapped to the temp_celcius rowset, and all
elements with the attribute unit="Farenheit" are mapped to the temp_farenheit rowset.

Decomposition annotation example: Mapping to an XML column
In annotated XML schema decomposition, you can map an XML fragment to a column defined using the
XML data type.

Consider the following XML document:
<publications>

<textbook title="Programming with XML">
<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>
</publications>

If you wanted to store the <textbook> XML element and book title as follows, you would add
annotations to the declarations of the <textbook> element and title attribute in the corresponding XML
schema document. The annotations should specify the DETAILS and TITLE columns, where the DETAILS
column has been defined with the XML type, as well as the TEXTBOOKS table.

110 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

||
|

||
|
|
|

||
|

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

Table 29. TEXTBOOKS

TITLE DETAILS

Programming with XML <textbook title="Programming with XML">
<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>

Depending on the annotation, an annotation can be specified in the schema document as an attribute or
an element. Some annotations can be specified as either. Refer to the documentation for each specific
annotation to determine how a particular annotation can be specified.

Specify the target table and column using either db2-xdb:rowSet and db2-xdb:column as attributes of
<xs:element> or <xs:attribute> or the <db2-xdb:rowSet> and <db2-xdb:column> children elements of
<db2-xdb:rowSetMapping>. Specifying these mappings as elements or attributes are equivalent.

The following fragment of the XML schema document shows how two mappings are added to the
<textbook> element and title attribute by specifying annotations as attributes.
<xs:element name="publications">

<xs:complexType>
<xs:sequence>

<xs:element name="textbook" maxOccurs="unbounded"
db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="DETAILS">

<xs:complexType>
<xs:sequence>

<xs:element name="isbn" type="xs:string"/>
<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear"/>
<xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"

db2-xdb:rowSet="TEXTBOOKS" db2-xdb:column="TITLE"/>
</xs:complexType>

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>

The db2-xdb:rowSet annotations specify the name of the target table, and the db2-xdb:column annotations
specify the name of the target column. Because the <textbook> element is of complex type and contains
complex content, and the db2-xdb:contentHandling annotation was not specified, by default, all markup
within the element (including its start and end tags) is inserted into the XML column according to the
serializeSubtree setting of db2-xdb:contentHandling. Whitespace within the XML document is preserved.
Refer to the db2-xdb:contentHandling documentation for more detail.

Decomposition annotation example: A value mapped to a single table that yields a
single row
Mapping a value from an XML document to a single table and column pair is a simple form of mapping
in annotated XML schema decomposition. This example shows the simpler case of a one to one
relationship between values in a rowSet.

The result of this mapping depends on the relationship between items mapped to the same rowSet. If the
values that are mapped together in a single rowSet have a one to one relationship, as determined by the
value of the maxOccurs attribute of the element or the containing model group declaration, a single row
will be formed for each instance of the mapped item in the XML document. If the values in a single

SQL XML programming 111

||

||

||
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|
|

|
|
|
|

rowSet have a one to many relationship, where one value appears only once in the document for multiple
instances of another item, as indicated by the value of the maxOccurs attribute, then multiple rows will
result when the XML document is decomposed.

Consider the following XML document:
<publications>

<textbook title="Programming with XML">
<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>
</publications>

If you wanted the values of the <isbn> and <publicationDate> elements, as well as the title attribute, to
be decomposed into the TEXTBOOKS table as follows, you need to add annotations to the declarations
for these elements and attributes in the corresponding XML schema document. The annotations would
specify the table and column names that each item is mapped to.

Table 30. TEXTBOOKS

ISBN TITLE DATE

0-11-011111-0 Programming with XML 2002

To map a value to a single table and column pair, you need to specify the table and column on the value
that you want to map. Do that by using one of the following sets of annotations:
v db2-xdb:rowSet and db2-xdb:column as attributes of <xs:element> or <xs:attribute>
v <db2-xdb:rowSet> and <db2-xdb:column> as child elements of <db2-xdb:rowSetMapping>

The following annotated XML schema specifies the db2-xdb:rowSet and db2-xdb:column annotations as
attributes.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

<xs:annotation>
<xs:appinfo>
<db2-xdb:defaultSQLSchema>"MYSCHEMA"</db2-xdb:defaultSQLSchema>
</xs:appinfo>
</xs:annotation>

<xs:element name="publications">
<xs:complexType>

<xs:sequence>
<xs:element name="textbook" maxOccurs="unbounded">

<xs:complexType>
<xs:sequence>

<xs:element name="isbn" type="xs:string" maxOccurs="1"
db2-xdb:rowSet="TEXTBOOKS"
db2-xdb:column="ISBN"/>

<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear" maxOccurs="1"

db2-xdb:rowSet="TEXTBOOKS"
db2-xdb:column="DATE"/>

<xs:element name="university" type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"

db2-xdb:rowSet="TEXTBOOKS"
db2-xdb:column="TITLE"/>

</xs:complexType>

112 IBM i: SQL XML Programming

|
|
|

|

|
|
|
|
|
|
|
|
|

|
|
|
|

||

|||

|||
|

|
|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</xs:element>
</xs:sequence>

</xs:complexType>
</xs:element>
</xs:schema>

The maxOccurs attribute for the elements that go into the rowset is 1, so the items that are mapped to the
TEXTBOOKS table have a one-to-one relationship with each other. Therefore, a single row is formed for
each instance of the <textbook> element.

Decomposition annotation example: A value mapped to a single table that yields
multiple rows
Mapping a value from an XML document to a single table and column pair is a simple form of mapping
in annotated XML schema decomposition. This example shows the more complex case of a one to many
relationship between values in a rowSet.

The result of this mapping depends on the relationship between items mapped to the same rowSet. If the
values that are mapped together in a single rowSet have a one to one relationship, as determined by the
value of the maxOccurs attribute of the element or the containing model group declaration, a single row
will be formed for each instance of the mapped item in the XML document. If the values in a single
rowSet have a one to many relationship, where one value appears only once in the document for multiple
instances of another item, as indicated by the value of the maxOccurs attribute, then multiple rows will
result when the XML document is decomposed.

Consider the following XML document:
<textbook title="Programming with XML">

<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>

If you wanted to store the ISBN and authors for a textbook as follows, you would add annotations to the
declarations of the <isbn> and <author> elements in the corresponding XML schema document. The
annotations should specify the ISBN and AUTHNAME columns, as well as the TEXTBOOK_AUTH table.

Table 31. TEXTBOOKS_AUTH

ISBN AUTHNAME

0-11-011111-0 Mary Brown

0-11-011111-0 Alex Page

Depending on the annotation, an annotation can be specified in the schema document as an attribute or
an element. Some annotations can be specified as either. Refer to the documentation for each specific
annotation to determine how a particular annotation can be specified.

To map a value to a single table and column pair, you need to specify the table and column on the value
that you want to map. Do that by using one of the following sets of annotations:
v db2-xdb:rowSet and db2-xdb:column as attributes of <xs:element> or <xs:attribute>
v <db2-xdb:rowSet> and <db2-xdb:column> as child elements of <db2-xdb:rowSetMapping>

The following annotated XML schema specifies the <db2-xdb:rowSet> and <db2-xdb:column> annotations
as elements.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

SQL XML programming 113

|
|
|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|
|
|

|

|
|
|
|
|
|
|

|
|
|

||

||

||

||
|

|
|
|

|
|

|

|

|
|

|
|
|

<xs:annotation>
<xs:appinfo>
<db2-xdb:defaultSQLSchema>"MYSCHEMA"</db2-xdb:defaultSQLSchema>
</xs:appinfo>
</xs:annotation>

<xs:element name="textbook">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="isbn" type="xs:string">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>TEXTBOOKS_AUTH</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="author" type="xs:string" maxOccurs="unbounded">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>TEXTBOOKS_AUTH</db2-xdb:rowSet>
<db2-xdb:column>AUTHNAME</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="publicationDate" type="xs:gYear"/>

<xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"/>
</xs:complexType>

</xs:element>
</xs:schema>

Notice how the <isbn> element is mapped only once to the ISBN column, yet it appears in two rows in
the table. This happens automatically during the decomposition process because there are multiple
authors per ISBN value. The value of <isbn> is duplicated in each row for every author.

This behavior occurs because a one to many relationship is detected between the <isbn> and <author>
elements, as the maxOccurs attribute for <author> is greater than 1.

Note that a one to many relationship can involve more than two items, and include sets of items. The one
to many relationship can also be deeply nested, where an item already involved in a one to many
relationship can participate in another one to many relationship.

Decomposition annotation example: A value mapped to multiple tables
A single value from an XML document can be mapped to multiple tables. This example shows how to
annotate an XML schema document to map a single value to two tables.

Consider the following XML document.
<textbook title="Programming with XML">

<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>

114 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|

|
|
|

|
|
|

|

|
|
|

<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>

To map a textbook's ISBN to the following two tables, you need to create two mappings on the <isbn>
element. This can be done by adding multiple <db2-xdb:rowSetMapping> elements to the <isbn> element
declaration in the XML schema document.

Table 32. TEXTBOOKS

ISBN TITLE

0-11-011111-0 Programming with XML

Table 33. SCHOOLPUBS

ISBN SCHOOL

0-11-011111-0 University of London

The following fragment of the XML schema document shows how two mappings are added to the <isbn>
element declaration to specify the mappings to two tables. The value of the title attribute and
<university> element also included in the mappings.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

<xs:annotation>
<xs:appinfo>
<db2-xdb:defaultSQLSchema>"MYSCHEMA"</db2-xdb:defaultSQLSchema>
</xs:appinfo>
</xs:annotation>

<xs:element name="textbook">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="isbn" type="xs:string">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
<db2-xdb:rowSetMapping>

<db2-xdb:rowSet>SCHOOLPUBS</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>

<xs:element name="publicationDate" type="xs:gYear"/>

<xs:element name="university" type="xs:string" maxOccurs="unbounded">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>SCHOOLPUBS</db2-xdb:rowSet>
<db2-xdb:column>SCHOOL</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

SQL XML programming 115

|
|
|
|

|
|
|

||

||

||
|

||

||

||
|

|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

</xs:annotation>
</xs:element>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required">

<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>TEXTBOOKS</db2-xdb:rowSet>
<db2-xdb:column>TITLE</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>

</xs:annotation>
</xs:attribute>

</xs:complexType>
</xs:element>

Decomposition annotation example: Grouping multiple values mapped to a single
table
In annotated XML schema decomposition, you can map multiple values from unrelated elements to the
same table, while preserving the relationship between logically-related values. This is possible by
declaring multiple rowSets, which are used to group related items to form a row, as shown in this
example.

For example, consider the following XML document:
<publications>

<textbook title="Programming with XML">
<isbn>0-11-011111-0</isbn>
<author>Mary Brown</author>
<author>Alex Page</author>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>
<childrensbook title="Children’s Fables">

<isbn>5-55-555555-5</isbn>
<author>Bob Carter</author>
<author>Melaine Snowe</author>
<publicationDate>1999</publicationDate>

</childrensbook>
</publications>

To generate the following table after decomposition, you need to ensure that values relating to a textbook
are not grouped in the same row as values associated with a children's book. Use multiple rowSets to
group related values and yield logically meaningful rows.

Table 34. ALLPUBLICATIONS

PUBS_ISBN PUBS_TITLE

0-11-011111-0 Programming with XML

5-55-555555-5 Children's Fables

In a simple mapping scenario, where you are mapping a single value to a single table and column pair,
you could just specify the table and column you want to map the value to.

This example shows a more complex case, however, where multiple values are mapped to the same table
and must be logically grouped. If you were to simply map each ISBN and title to the PUBS_ISBN and
PUBS_TITLE columns, without the use of rowSets, the decomposition process would not be able to
determine which ISBN value belonged with which title value. By using rowSets, you can group logically
related values to form a meaningful row.

116 IBM i: SQL XML Programming

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

||

||

||

||
|

|
|

|
|
|
|
|

The following XML schema document shows how two rowSets are defined to distinguish values of the
<textbook> element from values of the <childrensbook> element.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>"MYSCHEMA"</db2-xdb:defaultSQLSchema>
<db2-xdb:table>

<db2-xdb:name>ALLPUBLICATIONS</db2-xdb:name>
<db2-xdb:rowSet>testbk_rowSet</db2-xdb:rowSet>
<db2-xdb:rowSet>childrens_rowSet</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>
</xs:annotation>

<xs:element name="publications">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="textbook">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element name="isbn" type="xs:string"

db2-xdb:rowSet="testbk_rowSet"
db2-xdb:column="PUBS_ISBN"/>

<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear"/>
<xs:element name="university" type="xs:string" maxOccurs="unbounded"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"

db2-xdb:rowSet="testbk_rowSet"
db2-xdb:column="PUBS_TITLE"/>

</xs:complexType>
</xs:element>

<xs:element name="childrensbook">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">
<xs:element name="isbn" type="xs:string"

db2-xdb:rowSet="childrens_rowSet"
db2-xdb:column="PUBS_ISBN"/>

<xs:element name="author" type="xs:string" maxOccurs="unbounded"/>
<xs:element name="publicationDate" type="xs:gYear"/>

</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"

db2-xdb:rowSet="childrens_rowSet"
db2-xdb:column="PUBS_TITLE"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Notice how the db2-xdb:rowSet mappings in each of the element and attribute declarations do not specify
the name of a table, but rather the name of a rowSet. The rowSets are associated with the
ALLPUBLICATIONS table in the <db2-xdb:table> annotation, which must be specified as a child of
<xs:schema>.

By specifying multiple rowSets that map to the same table, you can ensure that logically related values
form a row in the table.

SQL XML programming 117

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|

Decomposition annotation example: Multiple values from different contexts
mapped to a single table
In annotated XML schema decomposition, you can map multiple values to the same table and column,
such that a single column can contain values that have come from different parts of a document. This is
possible by declaring multiple rowSets, as shown in this example.

For example, consider the following XML document:
<publications>

<textbook title="Principles of Mathematics">
<isbn>1-11-111111-1</isbn>
<author>Alice Braun</author>
<publisher>Math Pubs</publisher>
<publicationDate>2002</publicationDate>
<university>University of London</university>

</textbook>
</publications>

You can map both the author and the publisher to the same table that contains contacts for a particular
book.

Table 35. BOOKCONTACTS

ISBN CONTACT

1-11-111111-1 Alice Braun

1-11-111111-1 Math Pubs

The values in the CONTACT column of the resulting table come from different parts of the XML
document: one row might contain an author's name (from the <author> element, while another row
contains a publisher's name (from the <publisher> element).

The following XML schema document shows how multiple rowSets can be used to generate this table.
<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:db2-xdb="http://www.ibm.com/xmlns/prod/db2/xdb1">

<xs:annotation>
<xs:appinfo>

<db2-xdb:defaultSQLSchema>"MYSCHEMA"</db2-xdb:defaultSQLSchema>
<db2-xdb:table>

<db2-xdb:name>BOOKCONTACTS</db2-xdb:name>
<db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>
<db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>

</db2-xdb:table>
</xs:appinfo>
</xs:annotation>

<xs:element name="publications">
<xs:complexType>

<xs:sequence maxOccurs="unbounded">

<xs:element name="textbook" maxOccurs="unbounded">
<xs:complexType>

<xs:sequence>

<xs:element name="isbn" type="xs:string">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>

118 IBM i: SQL XML Programming

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

|
|

||

||

||

||
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>
<db2-xdb:column>ISBN</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="author" type="xs:string" maxOccurs="unbounded">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>author_rowSet</db2-xdb:rowSet>
<db2-xdb:column>CONTACT</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="publisher" type="xs:string">
<xs:annotation>
<xs:appinfo>

<db2-xdb:rowSetMapping>
<db2-xdb:rowSet>publisher_rowSet</db2-xdb:rowSet>
<db2-xdb:column>CONTACT</db2-xdb:column>

</db2-xdb:rowSetMapping>
</xs:appinfo>
</xs:annotation>

</xs:element>

<xs:element name="publicationDate" type="xs:gYear"/>
<xs:element name="university"

type="xs:string" maxOccurs="unbounded"/>
</xs:sequence>
<xs:attribute name="title" type="xs:string" use="required"/>

</xs:complexType>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

Notice how the db2-xdb:rowSet mappings in each of the element declarations do not specify the name of
a table, but rather the name of a rowSet. The rowSets are associated with the BOOKCONTACTS table in
the <db2-xdb:table> annotation, which must be specified as a child of <xs:schema>.

XML schema to SQL types compatibility for annotated schema decomposition
Annotated XML schema decomposition supports the decomposition of XML values into columns that are
of a compatible SQL type.

The following tables list XML schema data types and compatible SQL character, graphic, and date data
types for XML schema decomposition.

SQL XML programming 119

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

|
|
|

|
|

Table 36. Compatible XML schema and SQL data types

XML schema type

SQL type

C
H
A
R

V
A
R
C
H
A
R

D
A
T
E

T
I

M
E

T
I

M
E
S
T
A
M
P

string, normalizedString, token 1a* 1a 7 8 9

base64Binary, 2* 2 No No No

hexBinary 2* 2 No No No

byte, unsigned byte 3* 3 No No No

integer, positiveInteger, negativeInteger, nonNegativeInteger,
nonPositiveInteger

3* 3 No No No

int, unsignedInt 3* 3 No No No

long, unsignedLong 3* 3 No No No

short, unsignedShort 3* 3 No No No

decimal 3* 3 No No No

float 3* 3 No No No

double 3* 3 No No No

boolean 3* 3 No No No

time 4* 4 No 10 No

dateTime 4* 4 11 12 13

duration, gMonth, gYear, gDay, gMonthDay, gYearMonth 4* 4 No No No

date 4* 4 14 No No

Name, NCName, NOTATION, ID, IDREF, QName,
NMTOKEN, ENTITY

1a* 1a No No No

ENTITIES, NMTOKENS, IDREFS, list types 1b* 1b No No No

anyURI 6* 6 No No No

language 1a* 1a No No No

anySimpleType, union types 5* 5 No No No

Notes
* If the length of the input XML string is less than the defined length of the target column, then the

string is right-padded with blanks when inserted.

No Data types are not compatible for annotated XML schema decomposition.

1a Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping.
String length is computed after normalization, where the input string is normalized according to
the whitespace facet of the XML schema type.

1b Compatible according to the conditions described in 1a. The value that is inserted into the target
column is the string of concatenated list items, each separated by a single space (in accordance
with the "collapse" whitespace facet for lists).

2 Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The
input string is normalized according to the whitespace facet of the XML schema type. The
encoded (original) sting is inserted.

3 Compatible is the length of the XML input string, computed after processing according to the
db2-xdb:normalization setting, is less than or equal to the length of the target column. Also
compatible if db2-xdb:truncate is set to "true" or "1" for this column mapping.

4 Compatible if the number of characters is the string representation of the XML input value,

120 IBM i: SQL XML Programming

||

|

|

|
|
|
|

|
|
|
|
|
|
|

|
|
|
|

|
|
|
|

|
|
|
|
|
|
|
|
|

|

||
|

||

||
|
|
|
|

||
|
|

||
|
|
|
|

||
|
|

||

computed after processing according to the db2-xdb:normalization setting, is less than or equal to
the length of the target column in characters. Also compatible if db2-xdb:truncate is set to "true"
or "1" for this column mapping.

5 Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The
value that is inserted into the target column in either case is the character content of the element
or attribute.

6 Compatible if the string length of URI, in characters, is less than or equal to the length of the
target column in characters. If the input string is longer than the target column, then the string is
compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. Note that the
URI itself, not the resource the URI points to, is inserted.

7 Compatible if the string is of a valid date format: yyyy-mm-dd, mm/dd/yyyy, or dd.mm.yyyy.

8 Compatible if the string is of a valid time format: hh.mm.ss, hh:mm AM or PM, or hh:mm:ss.

9 Compatible if the string is of a valid timestamp format: yyyy-mm-dd-hh.mm.ss.nnnnnn.

10 For XML values that contain subseconds, compatible only if the decomposition annotation
specifies db2-xdb:truncate as "true" or "1". For XML values with timezone indicators and
db2-xdb:truncate is set to "true" or "1" , timezone indicators are inserted without the timezone.

11 Compatible if the year is composed of four digits and is not preceded by the '-' sign.

12 Compatible if the XML value does not have a timezone indicator. If the XML value has a
timezone indicator, then the values are compatible if db2-xdb:truncate is set to "true" or "1".

13 Compatible if the year is composed of four digits and is not preceded by the '-' sign. For XML
values with timezone indicators, compatible if db2-xdb:truncate is set to "true" or "1". If
subseconds are specified with more than six digits, compatible if db2-xdb:truncate is set to "true"
or "1".

14 Compatible if the year is composed of four digits and is not preceded by the '-' sign. For XML
values with timezone indicators, compatible if db2-xdb:truncate is set to "true" or "1". (Date
values are inserted without the timezone in this case.)

Table 37. Compatible XML schema and SQL data types

XML schema type

SQL type

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

C
L
O
B

D
B
C
L
O
B

string, normalizedString, token 1a* 1a 1a 1a*

base64Binary, No No 3 No

hexBinary No No 3 No

byte, unsigned byte No No 4 No

integer, positiveInteger, negativeInteger, nonNegativeInteger,
nonPositiveInteger

No No 4 No

int, unsignedInt No No 4 No

long, unsignedLong No No 4 No

short, unsignedShort No No 4 No

decimal No No 4 No

float No No 4 No

double No No 4 No

boolean No No 4 No

time No No 5 No

SQL XML programming 121

|
|
|

||
|
|
|
|

||
|
|
|

||

||

||

||
|
|

||

||
|

||
|
|
|

||
|
|

||

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

Table 37. Compatible XML schema and SQL data types (continued)

XML schema type

SQL type

G
R
A
P
H
I
C

V
A
R
G
R
A
P
H
I
C

C
L
O
B

D
B
C
L
O
B

dateTime No No 5 No

duration, gMonth, gYear, gDay, gMonthDay, gYearMonth No No 5 No

date No No 5 No

Name, NCName, NOTATION, ID, IDREF, QName, NMTOKEN,
ENTITY

1a* 1a 1a 1a*

ENTITIES, NMTOKENS, IDREFS, list types 1b* 1b 1b 1b*

anyURI No No 6 No

language No No 1a No

anySimpleType, union types 2a* 2a 2a 2a*

Notes
* If the length of the input XML string is less than the defined length of the target column, then the

string is right-padded with blanks when inserted.

No Data types are not compatible for annotated XML schema decomposition.

1a Compatible if the length of the XML input string, in double-byte characters, is less than or equal
to the length of the target column in characters. If the input string is longer than the target
column, then the string is compatible only if db2-xdb:truncate is set to "true" or "1" for this
column mapping. String length is computed after normalization, where the input string is
normalized according to the whitespace facet of the XML schema type.

1b Compatible according to the conditions described in 1a. The value that is inserted into the target
column is the string of concatenated list items, each separated by a single space (in accordance
with the "collapse" whitespace facet for lists).

2a Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The
value that is inserted into the target in either case is the character content of the element or
attribute.

3 Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The
input string is normalized according to the whitespace facet of the XML schema type. The
encoded (original) sting is inserted.

4 Compatible if the length of the XML string, computed after processing according to the
db2-xdb:normalization setting, is less than or equal to the length of the target column in
characters. Also compatible if db2-xdb:truncate is set to "true" or "1" for this column mapping.

5 Compatible if the number of characters in the string representation of the XML input value,
computed after processing according to the db2-xdb:normalization setting, is less than or equal to
the length of the target column in characters. Also compatible if db2-xdb:truncate is set to "true"
or "1" for this column mapping.

6 Compatible if the string length of URI, in characters, is less than or equal to the length of the
target column in characters. If the input string is longer than the target column, then the string is

122 IBM i: SQL XML Programming

|

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|

||
|

||

||
|
|
|
|

||
|
|

||
|
|
|
|

||
|
|
|
|

||
|
|

||
|
|
|

||
|

compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. Note that the
URI itself, not the resource the URI points to, is inserted.

The following table lists XML schema data types and compatible SQL binary data types for XML schema
decomposition.

Table 38. Compatible XML schema and SQL data types

XML schema type

SQL type

B
I
N
A
R
Y

V
A
R
B
I
N
A
R
Y

B
L
O
B

string, normalizedString, token 1a* 1a 1a

base64Binary, 1a 1a 1a

hexBinary 2* 2 2

byte, unsigned byte No No No

integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger No No No

int, unsignedInt No No No

long, unsignedLong No No No

short, unsignedShort No No No

decimal No No No

float No No No

double No No No

boolean No No No

time No No No

dateTime No No No

duration, gMonth, gYear, gDay, gMonthDay, gYearMonth No No No

date No No No

Name, NCName, NOTATION, ID, IDREF, QName, NMTOKEN, ENTITY 1a* 1a 1a

ENTITIES, NMTOKENS, IDREFS, list types 1b* 1b 1b

anyURI 1a 1a 1a

language 1a* 1a 1a

anySimpleType, union types 3* 3 3

Notes
* If the length of the input XML string is less than the defined length of the target column, then the

string is right-padded with blanks when inserted.

No Data types are not compatible for annotated XML schema decomposition.

1a Compatible if the length of the XML input string, in characters, is less than or equal to the length
of the target column in characters. If the input string is longer than the target column, then the
string is compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The
value that is inserted into the target in either case is the character content of the element or
attribute.

1b Compatible according to the conditions described in 1a. The value that is inserted into the target
column is the string of concatenated list items, each separated by a single space (in accordance
with the "collapse" whitespace facet for lists).

2 Compatible if the length of the XML input string, in bytes, is less than or equal to the length of
the target column in bytes. If the input string is longer than the target column, then the string is
compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. String length
is computed after normalization, where the input string is normalized according to the
whitespace facet of the XML schema type. The encoded (original) string is inserted.

SQL XML programming 123

|
|

|
|

||

|

|

|
|
|
|
|
|

|
|
|
|
|
|
|
|
|

|
|
|
|

|

||
|

||

||
|
|
|
|

||
|
|

||
|
|
|
|

3 Compatible if the length of the XML input string, in bytes, is less than or equal to the length of
the target column in bytes. If the input string is longer than the target column, then the string is
compatible only if db2-xdb:truncate is set to "true" or "1" for this column mapping. The value that
is inserted into the target column in either case is the character content of the element or
attribute.

The following tables list XML schema data types and compatible SQL numeric data types for XML
schema decomposition.

Table 39. Compatible XML schema and SQL data types

XML schema type

SQL type

S
M
A
L
L
I
N
T

I
N
T
E
G
E
R

B
I
G
I
N
T

R
E
A
L

D
O
U
B
L
E

D
E
C
F
L
O
A
T

string, normalizedString, token 1 1 1 1 1 1

base64Binary, No No No No No No

hexBinary No No No No No No

byte, unsigned byte 2 2 2 2 2 2

integer, positiveInteger, negativeInteger,
nonNegativeInteger, nonPositiveInteger

3 3 3 4 4 3

int, unsignedInt 3 2 2 4 2 2

long, unsignedLong 3 3 2 4 2 2

short, unsignedShort 2 2 2 2 2 2

decimal 4 4 4 4 4 4

float 5 5 5 6 6 6

double 5 5 5 5 6 6

boolean 7 7 7 7 7 7

time No No No No No No

dateTime No No No No No No

duration, gMonth, gYear, gDay, gMonthDay,
gYearMonth

No No No No No No

date No No No No No No

Name, NCName, NOTATION, ID, IDREF, QName,
NMTOKEN, ENTITY

No No No No No No

ENTITIES, NMTOKENS, IDREFS, list types No No No No No No

anyURI No No No No No No

language No No No No No No

anySimpleType, union types No No No No No No

Notes

No Data types are not compatible for annotated XML schema decomposition.

1 Compatible if the following conditions are true:
v The string complies with the XML schema lexical representation rules for the target type.
v The string can be converted to the numeric value without truncation or loss of significant

digits.

2 Compatible, and where -0 is in the value space of the XML type, -0 is stored in the database.

3 Compatible if the XML type is in the range of the SQL type. Where -0 is in the value space of the
XML type, -0 is stored in the database.

4 Compatible if value can be converted to the numeric value without truncation of loss of
significant digits. Where -0 is in the value space of the XML type, -0 is stored in the database.

5 Compatible if the value can be converted to the numeric value without truncation or loss of
significant digits, and the value is not "INF", "-INF", or "NaN". -0 is stored as 0 in the database.

124 IBM i: SQL XML Programming

||
|
|
|
|

|
|

||

|

|

|
|
|
|
|
|
|
|

|
|
|
|
|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|
|
|

|
|
|
|
|
|
|
|

|||||||
|
|
||||||

|

||

||

|

|
|

||

||
|

||
|

||
|

6 Compatible is the value is not "INF", "-INF", or "NaN". -0 is stored as 0 in the database.

7 Compatible, and the value inserted is '0' (for false) or '1' (for true).

Table 40. Compatible XML schema and SQL data types

XML schema type

SQL type

D
E
C
I

M
A
L

N
U
M
E
R
I
C

string, normalizedString, token 1 1

base64Binary, No No

hexBinary No No

byte, unsigned byte 2 2

integer, positiveInteger, negativeInteger, nonNegativeInteger, nonPositiveInteger 4 4

int, unsignedInt 4 4

long, unsignedLong 4 4

short, unsignedShort 2 2

decimal 4 4

float 5 5

double 5 5

boolean 7 7

time No No

dateTime No No

duration, gMonth, gYear, gDay, gMonthDay, gYearMonth No No

date No No

Name, NCName, NOTATION, ID, IDREF, QName, NMTOKEN, ENTITY No No

ENTITIES, NMTOKENS, IDREFS, list types No No

anyURI No No

language No No

anySimpleType, union types No No

Notes

No Data types are not compatible for annotated XML schema decomposition.

1 Compatible if the following conditions are true:
v The string complies with the XML schema lexical representation rules for the target type.
v The string can be converted to the numeric value without truncation or loss of significant

digits.

2 Compatible, and where -0 is in the value space of the XML type, -0 is stored in the database.

3 Compatible if the XML type is in the range of the SQL type. Where -0 is in the value space of the
XML type, -0 is stored in the database.

4 Compatible if value can be converted to the numeric value without truncation of loss of
significant digits. Where -0 is in the value space of the XML type, -0 is stored in the database.

5 Compatible if the value can be converted to the numeric value without truncation or loss of
significant digits, and the value is not "INF", "-INF", or "NaN". -0 is stored as 0 in the database.

6 Compatible is the value is not "INF", "-INF", or "NaN". -0 is stored as 0 in the database.

7 Compatible, and the value inserted is '0' (for false) or '1' (for true).

Limits and restrictions for annotated XML schema decomposition
Certain limits and restrictions apply to annotated XML schema decomposition.

SQL XML programming 125

||

||

||

|

|

|
|
|
|
|
|
|

|
|
|
|
|
|
|

|

||

||

|

|
|

||

||
|

||
|

||
|

||

||

|
|

Limits

Table 41. Limits for annotated XML schema decomposition

Condition Limit value

Maximum size of document to be decomposed 2 GB

Maximum number of tables referred to in a single
annotated XML schema

100

Maximum length of a string value of db2-xdb:expression 1024 bytes

Maximum length of a string value of db2-xdb:condition 1024 bytes

Maximum number of steps in db2-xdb:locationPath 128

Maximum number of unique annotation in an XML
schema

64 KB

Maximum string length of the value of db2-xdb:name
(table name), db2-xdb:column, db2-
xdb:defaultSQLSchema, or db2-xdb:SQLSchema

Same as the limit for the corresponding DB2 object

Maximum string length of the value of db2-xdb:rowSet same as the limit for db2-xdb:name

Restrictions

Annotated XML schema decomposition does not support the following:
v Decomposition of element of attribute wildcards

Elements or attributes in the XML document that correspond to the <xs:any> or <xs:anyAttribute>
declaration in the XML schema are not decomposed.
However, if these elements or attributes are children of elements that are decomposed with
db2-xdb:contentHandling set to serializeSubtree or stringValue, the contents of the wildcard
elements or attributes are decomposed as part of the serialized subtree or string value. These wildcard
elements or attributes must satisfy the namespace constraints that are specified in the corresponding
<xs:any> or <xs:anyAttribute> declarations.

v Substitution groups
An error is generated if a member of a substitution group appears in an XML document where the
group head appears in the XML schema.

v Runtime substitution using xsi:type
An element is decomposed according to the mappings in the schema type that is associated with the
element name in the XML schema. Use of xsi:type to specify a different type for an element in the
document results in a decomposition error.

v Recursive elements (elements that refer to themselves)
Annotated XML schemas that contain recursive element declarations cannot be enabled for
decomposition.

v Updates or deletes of existing rows in target tables
Currently, decomposition can only insert new rows into target tables.

v Referential constraints between tables that are updated by decomposition
To circumvent this restriction, use different annotated schemas for multiple decomposition operations
on the same instance document, to control the order in which the parent or child tables are updated.

v Attributes of simple type derived from NOTATION: decomposition inserts only the notation name.
v Attributes of type ENTITY: decomposition inserts only the entity name.
v Multiple mappings to the same rowSet and column with db2-xdb:expression and db2-xdb:condition:

where multiple items can be legally mapped to the same rowSet and column, according to mapping
rules, the mappings must not contain the db2-xdb:expression or db2-xdb:condition annotations.

126 IBM i: SQL XML Programming

|

||

||

||

|
|
|

||

||

||

|
|
|

|
|
|

|

||
|

|

|

|

|
|

|
|
|
|
|

|

|
|

|

|
|
|

|

|
|

|

|

|

|
|

|

|

|
|
|

Schema for XML decomposition annotations
Annotated XML schema decomposition supports a set of decomposition annotations that enable you to
specify how XML documents are to be decomposed and inserted into database tables. This topic shows
the XML schema for the annotated schema as defined by XML decomposition.
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns="http://www.ibm.com/xmlns/prod/db2/xdb1"
targetNamespace="http://www.ibm.com/xmlns/prod/db2/xdb1"
elementFormDefault="qualified" >

<xs:element name="defaultSQLSchema" type="xs:string"/>
<xs:attribute name="rowSet" type="xs:string"/>
<xs:attribute name="column" type="xs:string"/>
<xs:attribute name="locationPath" type="xs:string"/>
<xs:attribute name="truncate" type="xs:boolean"/>
<xs:attribute name="contentHandling">

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="text"/>
<xs:enumeration value="serializeSubtree"/>
<xs:enumeration value="stringValue"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="normalization" >

<xs:simpleType>
<xs:restriction base="xs:string">

<xs:enumeration value="original"/>
<xs:enumeration value="whitespaceStrip"/>
<xs:enumeration value="canonical"/>

</xs:restriction>
</xs:simpleType>

</xs:attribute>
<xs:attribute name="expression" type="xs:string"/>
<xs:attribute name="condition" type="xs:string"/>
<xs:element name="table">

<xs:complexType>
<xs:sequence>

<xs:element name="SQLSchema" type="xs:string" minOccurs="0"/>
<xs:element name="name" type="xs:string"/>
<xs:element name="rowSet" type="xs:string"

maxOccurs="unbounded" form="qualified"/>
</xs:sequence>

</xs:complexType>
</xs:element>
<xs:element name="rowSetMapping">

<xs:complexType>
<xs:sequence>

<xs:element name="rowSet" type="xs:string" />
<xs:element name="column" type="xs:string" minOccurs="0"/>
<xs:element name="expression" type="xs:string" minOccurs="0" />
<xs:element name="condition" type="xs:string" minOccurs="0"/>

</xs:sequence>
<xs:attribute ref="truncate" />
<xs:attribute ref="locationPath" />
<xs:attribute ref="normalization" />
<xs:attribute ref="contentHandling" />

</xs:complexType>
</xs:element>
<xs:element name=’rowSetOperationOrder’>

<xs:complexType>
<xs:choice minOccurs=’1’ maxOccurs=’1’>

<xs:element name=’order’ type=’orderType’ minOccurs=’1’
maxOccurs=’unbounded’/>

</xs:choice>
</xs:complexType>

</xs:element>
<xs:complexType name=’orderType’>

SQL XML programming 127

|
|
|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

<xs:sequence>
<xs:element name=’rowSet’ type=’xsd:string’ minOccurs=’2’
maxOccurs=’unbounded’/>

</xs:sequence>
</xs:complexType>

</xs:schema>

XML data model
The XML data model follows the XPath 2.0 and the XQuery 1.0 data model. This data model provides an
abstract representation of one or more XML documents or fragments.

The purpose of the data model is to define all permissible values of expressions in XPath, including
values that are used during intermediate calculations. Every XPath expression takes as its input an
instance of the data model and returns an instance of the data model. The XML data model is described
in terms of sequences and items, atomic values, and nodes.

Sequences and items
The XPath data model is based on the notion of a sequence. The value of an XPath expression is always a
sequence. A sequence is an ordered collection of zero or more items. An item is either an atomic value or
a node.

A sequence can contain nodes, atomic values, or any mixture of nodes and atomic values. For example,
each of the following values can each be represented as a single sequence:
v 36
v <dog/>
v (2, 3, 4)
v (36, <dog/>, "cat")
v ()
v An XML document

A node can occur in more than one sequence, and a sequence can contain duplicate items. A sequence
cannot be a member of another sequence. In other words, sequences cannot be nested. When two
sequences are combined, the result is always a flattened sequence of nodes and atomic values. For
example, appending the sequence (2, 3) to the sequence (3, 5, 6) results in the single sequence (3, 5, 6, 2,
3). Combining these sequences does not produce the sequence (3, 5, 6, (2, 3)) because nested sequences
never occur.

A single item that appears on its own is modeled as a sequence that contains one item. For example,
there is no distinction between the sequence (2) and the atomic value 2.

A sequence that contains zero items is called an empty sequence. Empty sequences can be used to represent
missing or unknown information.

Atomic values
An atomic value is an instance of one of the built-in atomic data types that are defined by XML Schema.

These data types include strings, integers, decimals, dates, and other atomic types. These types are
described as "atomic" because they cannot be subdivided. Some atomic types have literal values. For
example, the following literals are atomic values:
v "this is a string"
v 45
v 1.44

128 IBM i: SQL XML Programming

|
|
|
|
|
|

|

Other atomic types have constructor functions to build atomic values out of strings. For example, the
following constructor function builds a value of type xs:decimal out of the string "12.34":
xs:decimal("12.34")

Nodes
A node conforms to one of the types of nodes that are defined for XPath. These node types include:
document, element, attribute, text, processing instruction, comment, and namespace nodes.

The nodes of a sequence form one or more trees that consist of a document node and all of the nodes
that are reachable directly or indirectly from the document node. Every node belongs to exactly one tree,
and every tree has exactly one document node. A tree whose root node is a document node is referred to
as a document. A tree whose root node is not a document node is referred to as a fragment.

The following XML document includes a document element, named product, which contains a
description element. The product element has an attribute named pid (purchase order ID). The
description element contains elements named name, details, price, and weight.
<product xmlns="http://posample.org" pid="100-101-01">

<description>
<name>Snow Shovel, Deluxe 24"</name>
<details>A Deluxe Snow Shovel, 24 inches wide, ergonomic

curved handle with D-Grip</details>
<price>19.99</price>
<weight>2 kg</weight>

</description>
</product>

Node identity

Each node has a unique identity. This means that two nodes are distinguishable even though their names
and values might be the same. In contrast, atomic values do not have an identity. Every instance of an
atomic value (for example, the integer 7) is identical to every other instance of that value.

Document order

Among all of the nodes in a hierarchy, there is a total ordering called document order, in which each
node appears before its children. Document order corresponds to the order in which the nodes appear
when the node hierarchy is represented in XML format:
v The document node is the first node.
v Element nodes occur before their children.
v Namespace nodes immediately follow the element node with which they are associated.
v Attribute nodes occur after namespace nodes, or their associated element node, if no namespace nodes

exist.
Attribute nodes and namespace nodes are not children of an element node, but the associated element
node is their parent node.
The relative order of attribute nodes is arbitrary, but this order does not change during the processing
of an XPath expression.

v Element nodes, text nodes, processing instruction nodes, and comment nodes can be children of an
element node or a document node.

v The relative order of siblings is determined by their order in the node hierarchy.
v Children and descendants of a node occur before siblings that follow the node.

SQL XML programming 129

Node properties

Each node has properties that describe characteristics of that node. For example, a node's properties might
include the name of the node, its children, its parent, its attributes, and other information that describes
the node. The node kind determines which properties are present for specific nodes.

A node can have one or more of the following properties:

node name
The name of the node (expressed as a QName).

parent The node that is the parent of the current node.

type name
The dynamic (run-time) type of the node.

children
The sequence of nodes that are children of the current node.

attributes
The set of attribute nodes that belong to the current node.

string value
A string value that can be extracted from the node.

typed value
A sequence of zero or more atomic values that can be extracted from the node.

target Identifies the application to which a processing instruction is directed. The target is an NCName
(local name with no colons).

content
The content of a processing instruction, text node, or comment node.

Document nodes
A document node encapsulates an XML document.

A document node cannot have parent nodes and can have zero or more child nodes. The child nodes can
include element nodes, text nodes, processing instruction nodes, or comment nodes. To be a well-formed
document, the document node must have exactly one child element node and no child text nodes.

A document node has the following node properties:
v children
v string value
v typed value

For a document node, the string value is the concatenation of all of the string values of all of its
descendent text nodes, in document order, and the typed value is the same as the string value of type
xs:untypedAtomic.

For example, suppose that a document has the following textual representation:
<product xmlns="http://posample.org" pid="100-101-01">

<description>
<name>Snow Shovel, Deluxe 24"</name>
<details>A Deluxe Snow Shovel, 24 inches wide, ergonomic

curved handle with D-Grip</details>
<price>19.99</price>
<weight>2 kg</weight>

</description>

The document node has the following property values:

130 IBM i: SQL XML Programming

Table 42. Properties of the document node

Node property Value Value type

children product node

string value "Snow Shovel, Deluxe 24"A Deluxe Snow
Shovel, 24 inches wide, ergonomic curved
handle with D-Grip19.992 kg"

xs:string

typed value "Snow Shovel, Deluxe 24"A Deluxe Snow
Shovel, 24 inches wide, ergonomic curved
handle with D-Grip19.992 kg"

xs:untypedAtomic

Element nodes
An element node encapsulates an XML element.

An element can have zero or one parent, and zero or more children. The children can include element
nodes, processing instruction nodes, comment nodes, and text nodes. Document and attribute nodes are
never children of element nodes. However, an element node is considered to be the parent of its
attributes. The attributes of an element node must have unique QNames.

An element node has the following node properties:
v node name
v parent
v type name (The type name of an element node in DB2 is always xs:untyped.)
v children
v attributes
v string value
v typed value
v in-scope namespaces

For an element node, the string value is the concatenation of the string values of all of its text node
descendents in document order. If the element is empty, the string value is the empty string "". The typed
value of an element is one of the following values:
v If the element can be null, the typed value is ().
v If the element is empty, the typed value is the empty sequence ().
v Otherwise, the typed value is its string value as type xs:untypedAtomic.

For example, suppose that a document has the following textual representation:
<product xmlns="http://posample.org" pid="100-101-01">

<description>
<name>Snow Shovel, Deluxe 24"</name>
<details>A Deluxe Snow Shovel, 24 inches wide, ergonomic

curved handle with D-Grip</details>
<price>19.99</price>
<weight>2 kg</weight>

</description>

The product element node has the following property values:

Table 43. Properties of the product node

Node property Value Value type

node name product

parent document node

SQL XML programming 131

Table 43. Properties of the product node (continued)

type name xs:untyped

children description node

attributes pid

string value "Snow Shovel, Deluxe 24"A Deluxe Snow Shovel, 24
inches wide, ergonomic curved handle with
D-Grip19.992 kg"

xs:string

typed value "Snow Shovel, Deluxe 24"A Deluxe Snow Shovel, 24
inches wide, ergonomic curved handle with
D-Grip19.992 kg"

xs:untypedAtomic

in-scope namespaces (default, http://posample.org)

The name element node has the following property values:

Table 44. Properties of the name node

Node property Value Value type

node name name

parent description node

type name xs:untyped

children text node "Snow Shovel, Deluxe 24" "

attributes none

string value "Snow Shovel, Deluxe 24" " xs:string

typed value "Snow Shovel, Deluxe 24" " xs:untypedAtomic

in-scope namespaces (default, http://posample.org)

Attribute nodes
An attribute node represents an XML attribute.

An attribute node can have zero or one parent. The element node that owns an attribute is considered to
be its parent, even though an attribute node is not a child of its parent element.

An attribute node has the following node properties:
v node name
v parent
v type name (The type name of an attribute node in DB2 is always xs:untypedAtomic.)
v string value
v typed value

For an attribute node, the string value is the normalized value of the attribute or schema normalized
value of the attribute if the attribute was validated with a schema. The typed value is the same as the
string value of type xs:untypedAtomic.
<product xmlns="http://posample.org" pid="100-101-01">

<description>
<name>Snow Shovel, Deluxe 24"</name>
<details>A Deluxe Snow Shovel, 24 inches wide, ergonomic

curved handle with D-Grip</details>
<price>19.99</price>
<weight>2 kg</weight>

</description>

132 IBM i: SQL XML Programming

The pid attribute has the following property values:

Table 45. Properties of the pid attribute node

Node property Value Value type

node name pid

parent product node

type name xs:untypedAtomic

string value "100-101-01" xs:string

typed value 100-101-01" xs:untypedAtomic

Text nodes
A text node encapsulates XML character content.

A text node can have zero or one parent. The content of a text node can be empty. However, unless the
parent of a text node is empty, the content of the text node cannot be an empty string. Text nodes that are
children of a document or element node never appear as adjacent siblings. During document or element
node construction, any adjacent siblings are combined into a single text node. If the resulting text node is
empty, it is discarded.

Text nodes have the following node properties:
v content
v parent

For example, suppose that a document has the following textual representation:
<product xmlns="http://posample.org" pid="100-101-01">

<description>
<name>Snow Shovel, Deluxe 24"</name>
<details>A Deluxe Snow Shovel, 24 inches wide, ergonomic

curved handle with D-Grip</details>
<price>19.99</price>
<weight>2 kg</weight>

</description>

The text node beneath the name element node has the following property values:

Table 46. Properties of the name text node

Node property Value

content Snow Shovel, Deluxe 24"

parent name

The string value of a text node is the content of the node, which in the preceding example is " Snow
Shovel, Deluxe 24" ." The typed value of a text node is the same value as the string value and is type
xs:untypedAtomic.

Processing instruction nodes
A processing instruction node encapsulates an XML processing instruction.

A processing instruction node can have zero or one parent. The target of a processing instruction must be
an NCName (a local name with no colons).

A processing instruction node has the following node properties:
v target

SQL XML programming 133

v content
v parent

For example, consider the following processing instruction:
<?xml-stylesheet href="book.css" type="text/css"?>

This processing instruction has the following property values:

Table 47. Properties of the processing instruction node

Node property Value

target xml-stylesheet

content href="book.css" type="text/css"

parent document node

The string value of a processing instruction node is the content of the node, which in this case is
href="book.css" type="text/css". The typed value is the same value as the string value and is also type
xs:string.

Comment nodes
A comment node encapsulates XML comments.

A comment node can have zero or one parent.

A comment node has the following node properties:
v content
v parent

For example, consider the following content:
<ID>

<!-- This element contains an ID number. -->
101
</ID>

This comment has the following property values:

Table 48. Properties of the comment node

Node property Value

content This element contains an ID number.

parent ID node

The string value of a comment node is the content of the node, which in the case of the preceding
example is This element contains an ID number. The typed value is the same value as the string value
and is also type xs:string.

Data model generation
Before an XPath expression can be processed, the input documents must be represented in the XML data
model.

An input XML document is transformed into an instance of the XML data model through a process called
XML parsing. Alternatively, you can generate an instance of the XML data model by using SQL XML
constructors, such as XMLELEMENT and XMLATTRIBUTES. These built-in functions enable you to

134 IBM i: SQL XML Programming

generate XML data from relational data. Likewise, the result of an XPath expression can be transformed
into an XML representation through a process called XML serialization.
v During XML parsing, the string representation of an XML document is transformed into an instance of

the XPath model. Optionally, the XML document can be validated against a specific schema. The
parsed data is represented as a hierarchy of nodes and atomic values. Each atomic value, element
node, and attribute node in the XPath data model is annotated with a dynamic type. The dynamic type
specifies a range of values. For example, an attribute named version might have the dynamic type
xs:decimal to indicate that the attribute contains a decimal value.
Restriction: If the XML document is validated against a schema, DB2 does not keep the type
annotation for each node. The data is stored as untyped.
The value of an attribute is represented directly within the attribute node. An attribute node of
unknown type is annotated with the dynamic type xs:untypedAtomic.
The value of an element is represented by the children of the element node, which might include text
nodes and other element nodes. The dynamic type of an element node indicates how the values in the
child text nodes are to be interpreted. All element nodes have the type xs:untyped.
An atomic value of unknown type is annotated with the type xs:untypedAtomic.
If an input document has no schema, the document is not validated. DB2 assigns nodes and atomic
values as untyped (xs:untyped or xs:untypedAtomic).

v During serialization, the sequence of nodes and atomic values (the instance of the XPath data model) is
converted into its string representation. The result of serialization does not always represent a
well-formed document. In fact, serialization can result in a single atomic value (for example, 17) or a
sequence of elements that do not have a common parent.

XML values in SQL
In terms of the XQuery/XPath 2.0 data model, DB2 for i SQL defines an XML value as a sequence that
contains a single document node, with a sub-tree containing the document's content. Representing an
XML value as a document node guarantees that the value can be serialized to a character representation
that exactly represents the XML value. This definition is referred to as XML(CONTENT) in the 2008
Database Language SQL Part 14 - XML-Related Specifications (ISO 9075-14).

In order to ensure that the XML value is of type XML(CONTENT), a document node is constructed when
an XML value is created or copied within SQL.

The following process is observed during the construction of the document node:
1. If the content sequence contains a document node, the document node is replaced by its children.
2. Any atomic values in the content sequence are converted to strings and stored in text nodes, which

become children of the constructed document.
3. Adjacent text nodes in the content sequence are merged into a single text node.
4. If the content sequence contains an attribute node, an error is raised.

No validation is performed on the document node. The XML 1.0 rules that govern the structure of an
XML document (for example, the document node must have exactly one child that is an element node)
are not enforced during the construction of the XML value.

For example:
XMLCONCAT(XMLTEXT(’text node one ’), XMLTEXT(’text node two’))

The result XML value will be represented as a sequence of a single document node , with a single child
text node 'text node one text node two'. The representation is consistent with a serialized XML document.

Other implementations of the specification (including DB2 for z/OS® and DB2 for LUW) may define the
SQL XML type as an XQuery/XPath 2.0 sequence that can contain any number of items of any type of

SQL XML programming 135

node or atomic value, This definition does not guarantee that the value can be serialized to a character
representation that exactly represents the sequence. This type is referred to as XML(SEQUENCE) in the
specification and is a superset of XML(CONTENT).

SQL implementations that create a value of type XML(SEQUENCE) will represent the previous
XMLCONCAT expression's result as a sequence of two adjacent text nodes (with no parent document
node): ('text node one', 'text node two') .

In most cases, this difference in representation is not significant. When a value of XML(SEQUENCE) is
serialized, it must first be converted to XML(CONTENT), using the same process that occurs when an
XML(CONTENT) value is created. Therefore, serializing an XML value produces the same result
regardless of the XML type used by the implementation.

In addition, well formed XML documents that are obtained from a column in a table, host variable,
parameter marker, or by using the XMLPARSE built in function contain a root document node. This
causes the XML value to already be the more specific type of XML(CONTENT), even in environments
that implement the more general type of XML(SEQUENCE).

Different results can occur in a small number of cases when an XML value is constructed in SQL and
evaluated by an XPath expression.

For example:
select XMLSERIALIZE(OUTPUT_COL AS VARCHAR(100)) from
XMLTABLE(’$d_or_e/root/child’

passing XMLELEMENT(NAME "root",
XMLELEMENT(NAME "child",

XMLTEXT(’hello world’))) as "d_or_e"
) X(OUTPUT_COL);

DB2 for i will assign $d_or_e to a document node that represents the XML value, The step expression is
evaluated and the expected output <child>hello world</child> is returned. "root" is a child element of
the document node.

However, DB2 for LUW and DB2 for z/OS will assign $d_or_e to an element "root". Since element
"root" has no child called "root", this query will not return any rows.

The correct way to provide a fully platform independent solution is to write such a query so that a
document node is explicitly constructed, which forces the representation to be equivalent on all platforms
that comply with the specifications.
select XMLSERIALIZE(OUTPUT_COL AS VARCHAR(100)) from
XMLTABLE(’$d_or_e/root/child’ passing

XMLDOCUMENT(
XMLELEMENT(NAME "root",

XMLELEMENT(NAME "child",
XMLTEXT(’hello world’)))

) as "d_or_e"
) X(OUTPUT_COL);

Explicit construction of a document node is not necessary for XML values that are guaranteed to be
XML(CONTENT), such as when:
v the value is obtained from the application via host variable or parameter marker,
v the value is from a column in a DB2 table, or
v the XML value is explicitly or implicitly created using the XMLPARSE built in function.

136 IBM i: SQL XML Programming

Overview of XPath
XPath is an expression language that was designed by the World Wide Web Consortium (W3C) to allow
processing of XML data that conforms to the XQuery 1.0 and XPath 2.0 data model. XQuery is a
functional programming language that was designed by the World Wide Web Consortium (W3C) to meet
specific requirements for querying and modifying XML data. DB2 XPath supports a subset of the
language constructs in the XPath 2.0 recommendation.

The XPath language provides several kinds of expressions that can be constructed from keywords,
symbols, and operands. In most cases, the operands of various expressions, operators, and functions must
conform to the expected types. DB2 ignores type errors in certain situations.

DB2 XPath can be used as an argument to the XMLTABLE SQL built-in table function, which is used to
convert an XML value into a relational result set.

XPath expressions

The basic building block of XPath is the expression. DB2 XPath provides several kinds of expressions for
working with XML data:
v Primary expressions, which include the basic primitives of the language, such as literals, variable

references, and function calls
v Path expressions for locating nodes within a document tree
v Arithmetic expressions for addition, subtraction, multiplication, division, and modulus
v Comparison expressions for comparing two values
v Logical expressions for using boolean logic

XPath expressions can be composed with full generality, which means that where an expression is
expected, any kind of expression can be used. In general, the operands of an expression are other
expressions. In the following example, the operands of a logical expression are the comparison
expressions 1 = 1 and 2 = 2:
1 = 1 and 2 = 2

XPath processing

An XPath expression consists of an optional prolog that establishes the processing environment and an
expression that generates a result. XPath processing occurs in two phases: the static analysis phase and the
dynamic evaluation phase.

During the static analysis phase, the expression is parsed and augmented based on information that is
defined in the prolog. The static context is used to resolve type names, function names, and variable
names that are used by the expression. The static context includes all information that is available prior to
evaluating an expression. The static phase occurs when the expression is first evaluated. If a required
name is not found in the static context, an error is raised.

The dynamic evaluation phase occurs if no errors are detected during the static analysis phase. During
the dynamic evaluation phase, the value of the expression is computed. A dynamic type is associated
with each value as the value is computed. If an operand of an expression has a dynamic type that does
not match the expected type, a type error is raised. If the evaluation generates no errors, a result is
returned. The dynamic context includes information that is available at the time the expression is
evaluated.

The result of an XPath expression is, in general, a heterogeneous sequence of XML nodes and atomic
values. More specifically, the result of an XPath expression is an instance of the XPath data model.

SQL XML programming 137

The XPath 2.0 and XQuery 1.0 data model

The XPath 2.0 and XQuery 1.0 data model represents an XML document as a hierarchy (tree) of nodes
that represent XML elements and attributes. Each value of the data model is a sequence that can contain
zero, one, or more items. The items can be atomic values or nodes. Every XPath expression takes as its
input an instance of the XPath 2.0 and XQuery 1.0 data model and returns an instance of the XPath 2.0
and XQuery 1.0 data model.

DB2 XPath data types

DB2 XPath supports the following data types:
v xs:integer
v xs:decimal
v xs:double
v xs:string
v xs:boolean
v xs:untypedAtomic
v xs:date
v xs:dateTime
v xs:time
v xs:duration
v xs:yearMonthDuration
v xs:dayTimeDuration

DB2 checks data types during the dynamic evaluation phase and the static analysis phase. When an
expression encounters an inappropriate type, a type error is raised. For example, an XPath expression that
uses the plus operator (+) to add two strings together results in a type error because the plus operator is
only used in arithmetic expression to add numeric, yearMonthDuration, and dayTimeDuration values.
Implicit type conversions and type substitutions occur, when possible, to provide the type that is
expected by an expression.

The built-in function library

DB2 XPath provides a library of built-in functions for working with XML data. The library includes the
following types of functions:
v String functions
v Numeric functions
v Date and time functions
v Functions that operate on boolean values
v Functions that operate on sequences

These built-in functions are in the namespace with URI http://www.w3.org/2005/xpath-functions, which
by default is associated with the prefix fn. The default function namespace is set to fn by default, which
means that you can call functions in this namespace without specifying a prefix.

Function calls can be used anywhere in an XPath expression where an expression is expected.

Case sensitivity in DB2 XPath
XPath is a case-sensitive language.

138 IBM i: SQL XML Programming

Keywords in XPath use lowercase characters and are not reserved. Names in XPath expressions are
allowed to be the same as language keywords.

Whitespace in DB2 XPath
Whitespace is allowed in most XPath expressions to improve readability even if whitespace is not part of
the syntax for the expression. Whitespace consists of space characters (U+0020), carriage returns
(U+000D), line feeds (U+000A), and tabs (U+0009).

In general, whitespace is not significant in an XPath expression, except in the following situations where
whitespace is preserved:
v The whitespace is in a string literal.
v The whitespace clarifies an expression by preventing two adjacent tokens from being mistakenly

recognized as one.

The following examples include expressions that require whitespace for clarity:
v one- two results in a syntax error. The parser recognizes one- as a single QName (qualified name) and

raises an error when no operator is found.
v one -two does not result in a syntax error. The parser recognizes one as a QName, the minus sign (-) as

an operator, and then two as another QName.
v one-two does not result in a syntax error. However, the expression parses as a single QName because a

hypen (-) is a valid character in a QName.
v The following expressions all result in syntax errors:

– 5 div2

– 5div2

In these expressions, whitespace is required for the parser to recognize each token separately. Notice
that 5div 2 does not result in a syntax error.

Comments in DB2 XPath
Comments are allowed in an XPath expression, wherever nonessential whitespace is allowed. Comments
do not affect expression processing.

A comment is a string that is delimited by the symbols (: and :). The following example is a comment
in XPath:
(: This is a comment. It makes code easier to understand. :)

The following general rules apply to using comments in DB2 XPath:
v Comments can be used wherever nonessential whitepace is allowed. Nonessential whitespace is

whitespace that is not part of the syntax of an XPath expression.
v Comments can nest within each other, but each nested comment must have open and close delimiters,

(: and :).

The following examples illustrate legal comments and comments that result in errors:
v (: is this a comment? ::) is a legal comment.
v (: is this a comment? ::) or an error? :) results in an error because there is an unbalanced nesting

of the symbols (: and :).
v (: commenting out a (: comment :) may be confusing, but often helpful :) is a legal comment

because a balanced nesting of comments is allowed.
v "this is just a string :)" is a legal expression.
v (: "this is just a string :)" :) results in a syntax error. Likewise, "this is another string (:" is

a legal expression, but (: "this is another string (:" :) results in a syntax error. Literal content can
result in an unbalanced nesting of comments.

SQL XML programming 139

Character set
The DB2 XPath model uses a UTF-8 encoding. DB2 will convert all character, graphic, and XML input
parameters to UTF-8. It will cast output data from UTF-8 to the CCSID specified for the result column.

Default collation
DB2 XPath determines the default collation for the XPath expression from the collating sequence used for
the SQL statement containing the XMLTABLE. DB2 XPath supports binary (*HEX) collating sequences
and Unicode collating sequences using ICU (International Components for Unicode).

XML namespaces and qualified names in DB2 XPath
DB2 XPath uses XML namespaces to prevent naming collisions. An XML namespace is a collection of
names that is identified by a namespace URI. Namespaces provide a way of qualifying names that are
used for elements, attributes, data types, and functions in XPath.

Names in XPath are called QNames (qualified names) and conform to the syntax that is defined in the
W3C Recommendation Namespaces in XML. A QName consists of an optional namespace prefix and a local
name. The namespace prefix, if present, is bound to a URI and provides a shortened form of the URI.
During query processing, DB2 XPath expands the QName by resolving the URI that is bound to the
namespace prefix. The expanded QName includes the namespace URI and a local name. Two QNames
are equal if they have the same namespace URI and local name. This means that two QNames can match
even if they have different prefixes provided that the prefixes are bound to the same namespace URI.

Using QNames in XPath allows expressions to refer to element types or attribute names that have the
same local name, but might be associated with different DTDs or XML Schemas. In the following XML
data, pfx1 is a prefix that is bound to some URI. pfx2 is a prefix that is bound to a different URI. c is the
local name for all three elements:
<a xmlns:pfx1="uri1" xmlns:pfx2="uri2">

<pfx1:c>C</pfx1:c>
<pfx2:c>B</pfx2:c>
<c>A</c>

The elements in this example share the same local name, c, but naming conflicts do not occur because the
elements exist in different namespaces. During expression processing, the name pfx1:c is expanded into a
name that includes the URI bound to pfx1 (uri1) and the local name, c. Likewise, the name pfx2:c is
expanded into a name that includes the URI bound to pfx2 (uri2) and the local name, c. The element c,
which has an empty prefix, is bound to the default element namespace because no prefix is specified. An
error is raised if a name uses a prefix that is not bound to a URI.

The namespace prefix must be an NCName (non-colonized name). An XML NCName is similar to an
XML Name except that NCName cannot include a colon.

Some namespaces are predeclared; others can be added through declarations in the XPath expression
prolog. DB2 XPath includes the following predeclared namespace prefixes:

Prefix URI Description

xs http://www.w3.org/2001/XMLSchema XML Schema namespace

xsi http://www.w3.org/2001/XMLSchema-instance XML Schema instance
namespace

fn http://www.w3.org/2005/xpath-functions Default function namespace

xdt http://www.w3.org/2005/xpath-datatypes XPath type namespace

db2-fn http://www.ibm.com/xmlns/prod/db2/functions DB2 function namespace

140 IBM i: SQL XML Programming

In addition to the predeclared namespaces, namespaces can be provided in the following ways:
v The following namespace information is available in the static context:

– In-scope namespaces are a set of prefix and URI pairs. The in-scope namespaces are used for resolving
prefixes that are used in QNames in an XPath expression. In-scope namespaces come from the
following sources:
- Namespace declarations in an XPath expression
- The XMLNAMESPACES DB2 built-in function in the XMLELEMENT, XMLFOREST, or

XMLTABLE DB2 built-in function
– Default element or type namespace is the namespace that is used for any unprefixed QName that

appears where an element or type name is expected. The initial default element or type namespace
is the default namespace that is provided by a declare default element namespace clause in the
prolog of an XPath expression.

– Default function namespace is the namespace that is associated with built-in functions:
http://www.w3.org/2003/11/xpath-functions. There are no user-defined functions in XPath.

XPath type system
DB2 XPath is a strongly typed language in which the operands of various expressions, operators, and
functions conform to expected types.

The type system for DB2 XPath includes a subset of the built-in types of XML schema and the predefined
types of XPath.

The built-in types of XML Schema are in the namespace http://www.w3.org/2001/XMLSchema, which has
the predeclared namespace prefix xs. Some examples of built-in schema types include xs:integer and
xs:string.

Overview of the type system
The type system for DB2 XPath includes simple atomic types and complex types. A simple atomic type is a
primitive or derived atomic type that does not contain elements or attributes. A complex type can contain
mixed content or element-only content.

Constructor functions for built-in data types
Every built-in atomic type that is defined in the XML Schema Definition language has an associated
constructor function.

Syntax

�� prefix:type(value) ��

prefix
The prefix that is bound to the namespace for the data type. This is not the prefix that is bound to
the default function namespace.

type
The unqualified name of the target data type.

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

SQL XML programming 141

Returned value

If value is not the empty sequence, the returned value is an instance of prefix:type.

If value is the empty sequence, a constructor function returns the empty sequence.

Example:

The constructor function xs:integer(100) or the constructor function xs:integer("100") returns the
xs:integer value 100. A constructor function whose argument is a node with the typed value 100 also
returns the typed value 100.

Generic data types
Generic data types support data that is not strongly typed.

xs:anyType:

The data type xs:anyType is the base type for all data types that are defined in the XML Schema
Definition language.

xs:anySimpleType:

The data type xs:anySimpleType is the base type for all primitive types that are defined in the XML
Schema Definition language.

xs:anySimpleType is used to define a required type (for example, in a function signature) to indicate that
any simple type is acceptable. The base type of xs:anySimpleType is xs:anyType.

Casting is not supported to or from xs:anySimpleType.

Lexical form

xs:anySimpleType can have any lexical form.

xs:anyAtomicType:

The data type xs:anyAtomicType is the base type for all primitive atomic types that are defined in the
XML Schema Definition language.

Lexical form

The data type xs:anyAtomicType can be used to define a required type (for example, in a function
signature) to indicate that any of the primitive atomic types or xs:untypedAtomic is acceptable. The base
type of xs:anyAtomicType is xs:anySimpleType.

xs:anyAtomicType can have any lexical form.

Data types for untyped data
The xs:untyped and xs:untypedAtomic data types support untyped data.

xs:untyped:

The data type xs:untyped serves as a special type annotation to indicate types that have not been
validated by an XML schema. The data type xs:untyped can be used (for example, in a function
signature) to define a required type to indicate that only an untyped value is acceptable. The base type of
xs:untyped is xs:anyType.

142 IBM i: SQL XML Programming

If an element node is annotated as xs:untyped, all of its descendant element nodes are also annotated as
xs:untyped. DB2 for i does not retain the type annotations from schema validations. All elements in an
XML document have a type of xs:untyped.

xs:untypedAtomic:

The data type xs:untypedAtomic serves as a special type annotation to indicate atomic values that have
not been validated by an XML schema.

An attribute that has an unknown type is represented in the data model by an attribute node with the
type xs:untypedAtomic. The data type xs:untypedAtomic can be used (for example, in a function
signature) to define a required type to indicate that only an untyped atomic value is acceptable. The base
type of xs:untypedAtomic is xs:anyAtomicType. There is no constructor for this type. DB2 for i does not
preserve type annotations in an XML document, even if the document has been validated with an XML
schema. All attributes will have a type of xs:untypedAtomic in the data model.

Lexical form

xs:untypedAtomic can have any lexical form.

xs:string
The data type xs:string represents character strings in XML. Because xs:string is a simple type, it
cannot contain any children.

Lexical form

The lexical form of xs:string is a sequence of characters that can include any character that is in the
range of legal characters for XML.

Constructor

Use the following syntax to construct an instance of xs:string:

�� xs:string(value) ��

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Numeric data types
The xs:decimal, xs:double, and xs:integer data types support numeric data.

xs:decimal:

The data type xs:decimal represents a subset of the real numbers that can be represented by decimal
numerals.

Lexical form

The lexical form of xs:decimal is a finite-length sequence of decimal digits (0 to 9) that are separated by a
period as a decimal indicator. An optional leading sign is allowed. If the sign is omitted, a positive sign
(+) is assumed. Leading and trailing zeroes are optional. If the fractional part is zero, the period and any
following zeroes can be omitted. The following numbers are all valid examples of a decimal:
v -1.23

SQL XML programming 143

v 12678967.543233
v +100000.00
v 210.

Constructor

Use the following syntax to construct an instance of xs:decimal:

�� xs:decimal(value) ��

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

xs:double:

The data type xs:double is supported in DB2 XPath by the IEEE 64-bit decimal floating point.

Lexical form

The lexical form of xs:double is a mantissa followed, optionally, by the character E or e, followed by an
exponent. The exponent must be an integer. The mantissa must be a decimal number. The representations
for exponent and mantissa must follow the lexical rules for xs:integer and xs:decimal. If the E or e and
the exponent that follows are omitted, an exponent value of 0 is assumed.

The special values positive infinity, negative infinity, and not-a-number have the lexical representations
INF, -INF and NaN, respectively. Lexical representations for zero can take a positive or negative sign. The
following literals are all valid examples of a double:
v -1E4
v 1267.43233E12
v 12.78e-2
v 12
v -0
v 0
v INF

Constructor

Use the following syntax to construct an instance of xs:double:

�� xs:double(value) ��

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

xs:integer:

The data type xs:integer represents a decimal number that does not include a trailing decimal point. The
base type of xs:integer is xs:decimal.

144 IBM i: SQL XML Programming

Lexical form

The lexical form of xs:integer is a finite-length sequence of decimal digits (0 to 9) with an optional
leading sign. If the sign is omitted, a positive sign (+) is assumed. The following numbers are all valid
examples of integers:
v -1
v 0
v 12678967543233
v +100000

Constructor

Use the following syntax to construct an instance of xs:integer:

�� xs:integer(value) ��

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Range limits for numeric types:

DB2 XPath has range limits for numeric data types.

The following table lists the range limit and SQL equivalent for each XPath numeric data type.

Table 49. Range limits for numeric types

XML type DB2 XML range SQL type mapping

xs:double 34 digits of precision and an exponent
range of 10**-6143 to 10**+6144

DECFLOAT

xs:decimal Up to 34 digits of precision, and a
range of 1-10**34 to 10**34 -1

DECIMAL
Note that truncation might happen
for precision above 34 digits

xs:integer -9223372036854775808 to
9223372036854775807

BIGINT

xs:boolean
The data type xs:boolean supports the mathematical concept of binary-valued logic: true or false.

Lexical form

The lexical form of the data type xs:boolean can be one of the literal values true, false, 1, or 0.

Constructor

Use the following syntax to construct an instance of xs:boolean:

�� xs:boolean(value) ��

SQL XML programming 145

value
The value that is to be constructed. If this value is an empty sequence, the empty sequence is
returned.

If value is illegal for the target data type, the constructor function returns an error.

Date and time data types
The xs:date, xs:time, and xs:dateTime data types support date and time data.

xs:date:

The date type xs:date represents an interval of exactly one day that begins on the first moment of a given
day.

Lexical form

The lexical form of xs:date is a finite-length sequence of characters of the following form:
yyyy-mm-ddzzzzzz. The following abbreviations describe this form:

yyyy
A four-digit numeral that represents the year.

The value cannot begin with a negative (-) sign or a plus (+) sign.

0001 is the lexical representation of the year 1 of the Common Era (also known as 1 AD).

The value cannot be 0000.

- Separators between parts of the date.

mm A two-digit numeral that represents the month.

dd A two-digit numeral that represents the day.

zzzzzz
Optional. If present, represents the time zone.

Timezone indicator

The lexical form for the time zone indicator is a string that includes one of the following forms:
v A positive (+) or negative (-) sign that is followed by hh:mm, where the following abbreviations are

used:

hh A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

mm A two-digit numeral that represents the minutes. The value of the minutes property must be zero
when the hours property is equal to 14.

+ Indicates that the specified time instant is in a time zone that is ahead of the UTC time by hh hours
and mm minutes.

- Indicates that the specified time instant is in a time zone that is behind UTC time by hh hours and
mm minutes.

v The literal Z, which represents the time in UTC (Z represents Zulu time, which is equivalent to UTC).
Specifying Z for the time zone is equivalent to specifying +00:00 or -00:00.

Example

The following form indicates 10 October 2009, Eastern Standard Time in the United States:
2009-10-10-05:00

146 IBM i: SQL XML Programming

This date represents a UTC date of 2009-10-10T05:00:00Z.

xs:time:

The data type xs:time represents an instant of time that recurs every day.

Lexical form

The lexical form of the data type xs:time is hh:mm:ss.sssssssssssszzzzzz.

The lexical form of the data type xs:time is hh:mm:ss.sssssszzzzzz.

The following abbreviations describe this form:

hh A two-digit numeral (with leading zeros as required) that represents the hours.

: A separator between parts of the time portion.

mm A two-digit numeral that represents the minute.

ss A two-digit numeral that represents the whole seconds.

.ssssssssssssssssss
Optional. If present, a 1-to-12 digit numeral that represents the fractional seconds.

zzzzzz
Optional. If present, represents the time zone.

Example

The following form, which includes an optional time zone indicator, represents 1:20 p.m. Eastern
Standard Time, which is five hours behind than Coordinated Universal Time (UTC):
13:20:00-05:00

xs:dateTime:

The data type xs:dateTime represents an instant in time.

The xs:dateTime data type has the following properties:
v year
v month
v day
v hour
v minute
v second
v time zone (optional)

The year, month, day, hour, and minute properties are expressed as integer values. The seconds property
is expressed as a decimal value. The time zone property is expressed as a time zone indicator.

Lexical form

The lexical form of xs:dateTime is a finite-length sequence of characters of the following form:
yyyy-mm-ddThh:mm:ss.sssssssssssszzzzzz. The following abbreviations describe this form:

yyyy
A four-digit numeral that represents the year.

The value cannot begin with a negative (-) sign or a plus (+) sign.

SQL XML programming 147

0001 is the lexical representation of the year 1 of the Common Era (also known as 1 AD).

The value cannot be 0000.

- Separators between parts of the date portion

mm A two-digit numeral that represents the month.

dd A two-digit numeral that represents the day.

T A separator to indicate that the time of day follows.

hh A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

: A separator between parts of the time portion.

mm A two-digit numeral that represents the minute.

ss A two-digit numeral that represents the whole seconds.

.ssssssssssss
Optional. If present, a 1-to-12 digit numeral that represents the fractional seconds.

zzzzzz
Optional. If present, represents the time zone. If a time zone is not specified the dateTime has no
timezone; however, an implicit time zone of UTC (Coordinated Universal Time, also called Greenwich
Mean Time) is used for comparison and arithmetic operations.

Each part of the datetime value that is expressed as a numeric value is constrained to the maximum
value within the interval that is determined by the next-higher part of the datetime value. For example,
the day value can never be 32 and cannot be 29 for month 02 and year 2002 (February 2002).

Timezone indicator

The lexical form for the time zone indicator is a string that includes one of the following forms:
v A positive (+) or negative (-) sign that is followed by hh:mm, where the following abbreviations are

used:

hh A two-digit numeral (with leading zeros as required) that represents the hours. The value must be
between -14 and +14, inclusive.

mm A two-digit numeral that represents the minutes. The value of the minutes property must be zero
when the hours property is equal to 14.

+ Indicates that the specified time instant is in a time zone that is ahead of the UTC time by hh hours
and mm minutes.

- Indicates that the specified time instant is in a time zone that is behind UTC time by hh hours and
mm minutes.

v The literal Z, which represents the time in UTC (Z represents Zulu time, which is equivalent to UTC).
Specifying Z for the time zone is equivalent to specifying +00:00 or -00:00.

Example

The following form indicates noon on 10 October 2009, Eastern Standard Time in the United States:
2009-10-10T12:00:00-05:00

This time is expressed in UTC as 2009-10-10T17:00:00Z.

148 IBM i: SQL XML Programming

xs:duration:

The data type xs:duration represents a duration of time that is expressed by the Gregorian year, month,
day, hour, minute, and second components. xs:duration is derived from data type xs:anyAtomicType.

The range that can be represented by this data type is from
-P83333333333333Y3M11574074074DT1H46M39.999999999999S to
P83333333333333Y3M11574074074DT1H46M39.999999999999S (or -999999999999999 months and
-999999999999999.999999999999 seconds to 999999999999999 months and 999999999999999.999999999999
seconds).

The lexical form of xs:duration is the ISO 8601 extended format PnYnMnDTnHnMnS. The following
abbreviations describe the extended format:

P The duration designator.

nY n is an unsigned integer that represents the number of years.

nM n is an unsigned integer that represents the number of months.

nD n is an unsigned integer that represents the number of days.

T The date and time separator.

nH n is an unsigned integer that represents the number of hours.

nM n is an unsigned integer that represents the number of minutes.

nS n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must
be followed by one to twelve digits that represent fractional seconds.

For example, the following form indicates a duration of 1 year, 2 months, 3 days, 10 hours, and 30
minutes:
P1Y2M3DT10H30M

The following form indicates a duration of negative 120 days:
-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:
v If the number of years, months, days, hours, minutes, or seconds in any expression equals zero, the

number and its corresponding designator can be omitted. However, at least one number and its
designator must be present.

v The seconds part can have a decimal fraction.
v The designator T must be absent if and only if all of the time items are absent.
v The designator P must always be present.

For example, the following forms are allowed:
P1347Y
P1347M
P1Y2MT2H
P0Y1347M
P0Y1347M0D

The form P1Y2MT is not allowed because no time items are present. The form P-1347M is not allowed, but
the form -P1347M is allowed.

SQL XML programming 149

DB2 stores xs:duration values in a normalized form. In the normalized form, the seconds and minutes
components are less than 60, the hours component is less than 24, and the months component is less than
12. DB2 converts each multiple of 60 seconds to one minute, each multiple of 60 minutes to one hour,
each multiple of 24 hours to one day, and each multiple of 12 months to one year. For example, the
following XPath expression invokes a constructor function that specifies a duration of 2 months, 63 days,
55 hours, and 91 minutes:
xs:duration("P2M63DT55H91M")

DB2 converts 55 hours to 2 days and 7 hours, and 91 minutes to 1 hour and 31 minutes. The expression
returns the normalized duration value P2M65DT8H31M.

xs:dayTimeDuration:

The data type xs:dayTimeDuration represents a duration of time that is expressed by days, hours,
minutes, and seconds components. xs:dayTimeDuration is derived from data type xs:duration.

The range that can be represented by this data type is from -P11574074073DT23H163M219.999999999999S
to P11574074073DT23H163M219.999999999999S (or -999999999999999.999999999999 seconds to
999999999999999.999999999999 seconds).

The lexical form of xs:dayTimeDuration is PnDTnHnMnS, which is a reduced form of the ISO 8601 format.
The following abbreviations describe this form:

P The duration designator.

nD n is an unsigned integer that represents the number of days.

T The date and time separator.

nH n is an unsigned integer that represents the number of hours.

nM n is an unsigned integer that represents the number of minutes.

nS n is an unsigned decimal that represents the number of seconds. If a decimal point appears, it must
be followed by one to twelve digits that represent fractional seconds.

For example, the following form indicates a duration of 3 days, 10 hours, and 30 minutes:
P3DT10H30M

The following form indicates a duration of negative 120 days:
-P120D

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:
v If the number of days, hours, minutes, or seconds in any expression equals zero, the number and its

corresponding designator can be omitted. However, at least one number and its designator must be
present.

v The seconds part can have a decimal fraction.
v The designator T must be absent if and only if all of the time items are absent. The designator P must

always be present.

For example, the following forms are allowed:

150 IBM i: SQL XML Programming

P13D
PT47H
P3DT2H
-PT35.89S
P4DT251M

The form P-134D is not allowed, but the form -P1347D is allowed.

DB2 stores xs:dayTimeDuration values in a normalized form. In the normalized form, the seconds and
minutes components are less than 60, and the hours component is less than 24. DB2 converts each
multiple of 60 seconds to one minute, each multiple of 60 minutes to one hour, and each multiple of 24
hours to one day. For example, the following XPath expression invokes a constructor function specifying
a dayTimeDuration of 63 days, 55 hours, and 81 seconds:
xs:dayTimeDuration("P63DT55H81S")

DB2 converts 55 hours to 2 days and 7 hours, and 81 seconds to 1 minute and 21 seconds. The expression
returns the normalized dayTimeDuration value P65DT7H1M21S.

xs:yearMonthDuration:

The data type xs:yearMonthDuration represents a duration of time that is expressed by the Gregorian
year and month components. xs:yearMonthDuration is derived from data type xs:duration.

The range that can be represented by this data type is from -P83333333333333Y3M to
P83333333333333Y3M (or -999999999999999 to 999999999999999 months).

The lexical form of xs:yearMonthDuration is PnYnM, which is a reduced form of the ISO 8601 format. The
following abbreviations describe this form:

P The duration designator.

nY n is an unsigned integer that represents the number of years.

nM n is an unsigned integer that represents the number of months.

An optional preceding minus sign (-) indicates a negative duration. If the sign is omitted, a positive
duration is assumed.

For example, the following form indicates a duration of 1 year and 2 months:
P1Y2M

The following form indicates a duration of negative 13 months:
-P13M

Reduced precision and truncated representations of this format are allowed, but they must conform to the
following requirements:
v The designator P must always be present.
v If the number of years or months in any expression equals zero, the number and its corresponding

designator can be omitted. However, at least one number and its designator (Y or M) must be present.

For example, the following forms are allowed:
P1347Y
P1347M

The form P-1347M is not allowed, but the form -P1347M is allowed. The form P24YM is not allowed because
M must have one preceding digit. PY43M is not allowed because Y must have at least one preceding digit.

SQL XML programming 151

DB2 stores xs:yearMonthDuration values in a normalized form. In the normalized form, the months
component is less than 12. DB2 converts each multiple of 12 months to one year. For example, the
following XPath expression invokes a constructor function that specifies a yearMonthDuration of 20 years
and 30 months:
xs:yearMonthDuration("P20Y30M")

DB2 converts 30 months to 2 years and 6 months. The expression returns the normalized
yearMonthDuration value P22Y6M.

Casts between XML schema data types
You can use data type constructor functions to cast a value to a specific data type. Specify the value that
you want to cast and the type to which you want to cast it.

The following table lists the compatible types for casting. You can cast values only of the listed input
types to each target type.

Table 50. Compatible types for casting

Target type Source type Comments

xs:string Any type v If the source type is xs:boolean, the result is
’true’ or ’false’.

v If the source type is xs:integer, the result is the
canonical lexical representation of the value,
as defined in the XML Schema specification.

v If the source type is xs:decimal:

– If the value has no significant digits after
the decimal point, the decimal point and
the zeroes that follow the decimal point are
deleted, and the rules for casting from
xs:integer apply.

– Otherwise, the result is the canonical lexical
representation of the value, as defined in
the XML Schema specification.

v If the source type is xs:double:

– If .000001<=value<=1000000, the value is
converted to xs:decimal, and the rules for
casting from xs:decimal apply.

– If value=+0, or value=-0, the result is '0'.

– Otherwise, the result is the canonical lexical
representation of the value, as defined in
the XML Schema specification.

v If the source type is xs:duration,
xs:yearMonthDuration, or
xs:dayTimeDuration, the result is the canonical
lexical representation of the value.

v If the source type is xs:date, xs:dateTime, or
xs:time, the result is the lexical representation
of the value, with no adjustment for the time
zone. If the value has no time zone, the result
has no time zone. If the time zone is +00:00 or
-00:00, the result has the UTC time zone "Z".

152 IBM i: SQL XML Programming

Table 50. Compatible types for casting (continued)

Target type Source type Comments

xs:boolean xs:untypedAtomic, xs:string,
xs:boolean, xs:double, xs:decimal,
xs:integer

v If the source type is numeric, a value of 0 or
NaN is cast to type xs:boolean with a value of
false. All other numeric values are cast to
type xs:boolean with a value of true.

v If the source type is xs:string or
xs:untypedAtomic, the value "true" and the
value "1" are cast to the xs:boolean value true.
The value "false" and the value "0" are cast to
the xs:boolean value false. All other values
are invalid, and result in an error.

xs:decimal Numeric types, xs:untypedAtomic,
xs:string, xs:boolean

Values of numeric types are converted to a value
that is within the set of possible values for type
xs:decimal and is numerically closest to the
source. If two values are equally close, the one
that is closest to zero is chosen. The source value
cannot be +INF, -INF, NaN, or outside of the
range of type xs:decimal. For values of type
xs:boolean, true is converted to 1.0, and false is
converted to 0.0.

xs:double Numeric types, xs:untypedAtomic,
xs:string, xs:boolean

If the source is of type xs:decimal, or xs:integer,
the cast is performed as xs:double(SV cast as
xs:string) where SV is the source value. If the
source is of type xs:boolean, true is cast to a
value of 1.0E0, and false is cast to a value of
0.0E0.

xs:integer Numeric types, xs:untypedAtomic,
xs:string, xs:boolean

If the source type is a numeric type other than
integer, the result is the source value with the
fractional part discarded. The source cannot be
outside of the range of type xs:integer. For
values of type xs:boolean, true is converted to 1,
and false is converted to 0.

xs:date xs:dateTime, xs:untypedAtomic,
xs:string

The time portion of the source value is not used
in the conversion.

xs:time xs:dateTime, xs:untypedAtomic,
xs:string

The date portion of the source value is not used
in the conversion.

xs:dateTime xs:date, xs:untypedAtomic,
xs:string

If the source type is xs:date, the time portion of
the target value is the first moment of the day.
The value is not adjustment for the time zone.

xs:duration xs:dayTimeDuration,
xs:yearMonthDuration,
xs:untypedAtomic, xs:string

v If the source type is xs:dayTimeDuration, the
target value has the same days, hours,
minutes and seconds components as the
source value. The year component and the
month component of the target value are 0.

v If the source type is xs:yearMonthDuration,
the target value has the same years and
months components as the source value. The
days, hours, minutes and seconds components
are 0.

SQL XML programming 153

Table 50. Compatible types for casting (continued)

Target type Source type Comments

xs:dayTimeDuration xs:duration, xs:untypedAtomic,
xs:string

A cast from xs:duration to xs:dayTimeDuration
results in information loss. To avoid information
loss, cast the xs:duration value to an
xs:yearMonthDuration value and an
xs:dayTimeDuration value and work with both
values.

xs:yearMonthDuration xs:duration, xs:untypedAtomic,
xs:string

A cast from xs:duration to xs:yearMonthDuration
results in information loss. To avoid information
loss, cast the xs:duration value to an
xs:yearMonthDuration value and an
xs:dayTimeDuration value and work with both
values.

Example

The following XPath expression returns purchase orders that contain more than one item. The xs:integer
constructor function casts the value of the quantity element to an integer. That integer can then be
compared to the integer 1.
declare namespace ipo="http://www.example.com/IPO";
/ipo:purchaseOrder[items/item/quantity/xs:integer(.) > 1]

When an xs:untypedAtomic is compared with an integer, DB2 converts both operands to type xs:double
to make the numeric comparison. The cast ensures that the values are compared as values of type
xs:integer.

XPath prologs and expressions
In DB2 XPath, an XPath expression consists of an optional prolog that is followed by an expression. The
prolog contains a series of declarations that define the processing environment for the expression. The
expression consists of an expression that defines the result of the XPath expression.

Syntax

The following diagrams show the general format of an XPath expression.

XPath expression

��
prolog

expression ��

expression:

primary-expression
logical-expression
comparison-expression
arithmetic-expression
path-expression

prolog:

154 IBM i: SQL XML Programming

� namespace-declaration
default-namespace-declaration

Example

The following example illustrates the structure of a typical expression in DB2 XPath. In this example, the
prolog contains a namespace declaration that binds the prefix ipo to a URI. The expression body contains
an expression that returns one row for each ipo:purchaseOrder element with XML documents stored in
the XMLPO column. A predicate is used to specify that the name attribute on the shipTo node is "Jane"
and the name attribute on the billTo node is "Jason".

Prologs
The prolog consists of a declaration that defines the processing environment for an XPath expression. A
declaration in the prolog is followed by a semicolon (;). The prolog is an optional part of the XPath
expression.

The prolog can contain zero or more namespace declarations and zero or one default namespace
declarations.

Namespace declarations:

A namespace declaration is an optional declaration in the XPath expression prolog that declares a
namespace prefix and associates the prefix with a namespace URI.

The declaration adds the prefix-URI pair to the set of statically known namespaces for the expression.
The statically known namespaces include all of the namespaces that are known during the static processing
of an expression. The namespace declaration is in scope throughout the XPath expression in which it is
declared. Multiple declarations of the same namespace prefix in the query prolog result in an error.

Restriction: The prefixes xmlns and xml are reserved and cannot be specified as a prefix in a namespace
declaration.

Syntax

namespace-declaration

�� declare namespace prefix = stringLiteral ; ��

prefix
Specifies a namespace prefix that is bound to the URI. The namespace prefix is used in qualified
names (QNames) to identify the namespace for an element, attribute, data type, or function.

stringLiteral
Specifies a string literal that represents the URI to which the prefix is bound. The string literal value
must be a valid URI and cannot be a zero-length string.

You can override predeclared namespace prefixes by specifying a namespace declarations for those
prefixes. However, you cannot override the URI that is associated with the prefix xml.

SELECT X.* FROM T1, XMLTABLE (’declare namespace ipo="http://www.example.com/IPO";
/ipo:purchaseOrder[shipTo/@name = "Jane" and billTo/@name = "Jason"]’
PASSING T1.XMLPO) X;

Figure 1. Structure of a typical expression in DB2 XPath

SQL XML programming 155

The string literal cannot be http://www.w3.org/XML/1998/namespace or http://www.w3.org/
2000/xmlns/.

Example

The following namespace declaration declares the namespace prefix ns1 and associates it with the
namespace URI http://posample.org:
declare namespace ns1 = "http://posample.org";
/ns1:purchaseOrder[shipTo/name = "Jane" and billTo/name = "Jason"]

When the expression in the example executes, the namespace prefix ns1 is associated with the namespace
URI http://posample.org. The instance of the purchase order document to which the expression refers is
the instance with the namespace URI http://posample.org.

Default namespace declarations:

Default namespace declarations are optional declarations in the XPath expression prolog that specify the
namespaces to use for unprefixed QNames (qualified names).

An XPath expression prolog can include a default element namespace declaration.

The default element namespace declaration specifies a namespace URI that is used for unprefixed
element names. The XPath expression prolog can contain one default element namespace declaration only.
This declaration is in scope throughout the expression in which it is declared. If no default element
namespace is declared, unqualified element names are in no namespace.

Syntax

default-namespace-declaration

�� declare default element namespace stringLiteral ; ��

namespace
Specifies a string literal that represents the URI for the namespace. The string literal must be a valid
URI or a zero-length string.

If namespace is a zero-length string, unprefixed element names are in no namespace.

The string literal cannot be http://www.w3.org/XML/1998/namespace or http://www.w3.org/
2000/xmlns/.

Example

The following declaration specifies that the default namespace for element names is the namespace that is
associated with the URI http://posample.org
declare default element namespace "http://posample.org";

When the query in the example executes, all element nodes in this expression (purchaseOrder, shipTo,
billTo, and name) are associated with the namespace URI http://posample.org.
declare default element namespace "http://posample.org";
/purchaseOrder[shipTo/name = "Jane" and billTo/name = "Jason"]

When the expression in the example executes, the namespace URI http://posample.org is associated with
all unprefixed element names in the expression.

156 IBM i: SQL XML Programming

Expression evaluation and processing
A number of operations are often included in the processing of expressions. These operations include
extracting atomic values from nodes and using type promotion and subtype substitution to obtain values
of an expected type.

Atomization:

Atomization is the process of converting a sequence of items into a sequence of atomic values.
Atomization is used by expressions whenever a sequence of atomic values is required.

Each item in a sequence is converted to an atomic value by applying the following rules:
v If the item is an atomic value, then the atomic value is returned.
v If the item is a node, its typed value is returned. The typed value of a node is a sequence of zero or

more atomic values that can be extracted from the node. If the node has no typed value, then an error
is returned. If an XML document is validated with a schema, DB2 for i does not keep the type
annotation for each node. The data is always stored as untyped. The typed value of an untyped
element or attribute is the string value as an instance of xs:untypedAtomic.

Implicit atomization of a sequence produces the same result as invoking the fn:data function explicitly on
a sequence.

For example, the following sequence contains a combination of nodes and atomic values:
("Some text", <anElement>More text</anElement>, 1001)

Applying atomization to this sequence results in the following sequence of atomic values:
("Some text", "More text", 1001)

The following XPath expressions use atomization to convert items into atomic values:
v Arithmetic expressions
v Comparison expressions
v Function calls with arguments whose expected types are atomic

Type promotion:

Type promotion is a process that converts an atomic value from its original type to the type that is
expected by an expression. XPath uses type promotion during the evaluation of function calls and
operators that accept numeric or string operands.

XPath permits type promotion and subtype substitution. Type promotion and subtype substitution differ
in the following ways:
v For type promotion, the atomic value is actually converted from its original type to the type that is

expected by an expression.
v For subtype substitution, an expression that expects a specific type can be invoked with a value that is

derived from that type. However, the value retains its original type.

Numeric type promotion:
A value of type xs:decimal (or any type that is derived by restriction from xs:decimal) can be
promoted to xs:double. The result of this promotion is created by casting the original value to the
required type.

In the following example, the xs:double value 13.54e-2 is added to the xs:decimal value 100. The
xs:decimal is promoted to xs:double to do the arithmetic and a result with a type of xs:double is
returned:
xs:double(13.54e-2) + xs:decimal(100)

SQL XML programming 157

Subtype substitution:

Subtype substitution is the use of a value whose type is derived from an expected type.

Subtype substitution does not change the actual type of a value. For example, if an xs:integer value is
used where an xs:decimal value is expected, the value retains its type as xs:integer.

Subtype substitution is used whenever a value that is derived from an expected type is passed to an
expression.

In the following example, an xs:dayTimeDuration is substituted for an xs:duration value that is expected
by the fn:hours-from-duration function.
fn:hours-from-duration(xs:dayTimeDuration("PT2H"))

Primary expressions
A primary expression contains one of the following types of items: literal, variable reference,
parenthesized expression, context item expression, or function call.

Syntax

primary-expression:

literal
variable-reference
parenthesized-expression
context-item-expression
function-call

Literals:

DB2 XPath supports two kinds of literals: numeric literals and string literals.

A numeric literal is an atomic value of type xs:integer, xs:decimal, or xs:double. A numeric literal that
contains no decimal point (.) and no e or E character is an atomic value of the type xs:integer. A
numeric literal that contains a decimal point (.), but no e or E character is an atomic value of type
xs:decimal. A numeric literal that contains an e or E character is an atomic value of type xs:double.
Values of numeric literals are interpreted according to the rules of XML Schema.

A string literal is an atomic value of type xs:string that is enclosed in delimiting apostrophes or
quotation marks. String literals can include predefined entity references and character references.

To include an apostrophe within a string literal that is delimited by apostrophes, specify two adjacent
apostrophes. Similarly, to include a quotation mark within a string literal that is delimited by quotation
marks, specify two adjacent quotation marks.

If a string literal is used in an XPath expression within the value of an XML attribute, the characters that
are used to delimit the literal must be different from the characters that are used to delimit the attribute.

Examples

Example of XPath expressions with numeric literals:
’7635’
’8735.98834’
’93948.87E+77’

Example of an XPath expression that contains a string literal with an embedded double quotation mark:

158 IBM i: SQL XML Programming

SELECT X.* FROM X1,
XMLTABLE(’$inp/purchaseOrder[contains(., "string literal double-quote "" in the middle")]’

PASSING X1.XMLPO as "inp") X;

Predefined entity references:

A predefined entity reference is a short sequence of characters that represents a character that has some
syntactic significance in DB2 XPath.

A predefined entity reference begins with an ampersand (&) and ends with a semicolon (;). When a string
literal is processed, each predefined entity reference is replaced by the character that it represents. The
following table lists the predefined entity references that DB2 XPath recognizes:

Table 51. Predefined entity references in DB2 XPath

Entity reference Character represented

< <

> >

& &

" "

' '

Character references:

A character reference is an XML-style reference to a Unicode character that is identified by its decimal or
hexadecimal code point.

A character reference begins with either &#x or &# and ends with a semicolon (;). If the character reference
begins with &#x, the digits and letters up to the terminating semicolon (;) provide a hexadecimal
representation of the character's code point in ISO/IEC 10646. If the character reference begins with &#,
the digits up to the terminating semicolon (;) provide a decimal representation of the character's code
point.

Example

The character reference € represents the Euro symbol (€).

Variable references in DB2 XPath:

A variable reference is a QName that is preceded by a dollar sign ($). When an XPath expression is
evaluated, each variable reference resolves to the value of the expression that is bound to the variable.

Every variable reference must match a name in the in-scope variables for the XPath expression. In-scope
variables are bound from the SQL context that invokes the XPath expression, such as variables defined in
the row argument expression of XMLTABLE.

Two variable references are equivalent if their local names are the same and their namespace prefixes are
bound to the same namespace URI in the in-scope namespaces. A variable reference with no prefix is in
no namespace. DB2 for i does not allow a namespace prefix to be specified for a variable name.

Examples

In the following example, the XMLTABLE function binds the value of the host variable :IHV to
$PARTNUMBER, and the value of column C1 to $QTY.

SQL XML programming 159

SELECT X.* FROM T1, XMLTABLE(’//item[@partNum = $PARTNUMBER and quantity=$QTY]’
PASSING T1.XMLPO, :IHV AS PARTNUMBER, T1.C1 AS QTY) X;

Parenthesized expression:

Parentheses can be used to enforce a particular order of evaluation in expressions that contain multiple
operators.

Use a parenthesized expression to explicitly specify the order of operations in a complex arithmetic
expression.

Empty parentheses are used to denote an empty sequence.

Syntax

parenthesized-expression:

()
expression

Examples

In the following example, the parenthesized expressions 5+5 and 6+4 are evaluated first.
((5+5) * (6+4)) div 5

The result is 20.

Context item expressions:

A context item expression consists of a single period (.). A context item expression evaluates to the item
that is currently being processed, which is known as the context item. The context item can be either a
node or an atomic value.

Example

The following example contains a context item expression that identifies nylon pants in the products
document:
declare namespace ipo="http://www.example.com/IPO";
/ipo:products/product/name[. = "Nylon pants"]

Function calls:

DB2 XPath supports calls to built-in XPath functions.

Built-in XPath functions are in the namespace http://www.w3.org/2003/11/xpath-functions. If the
function name in the function call has no namespace prefix, the function is considered to be in the default
function namespace.

DB2 XPath uses the following process to evaluate functions:
1. DB2 XPath evaluates each expression that is passed as an argument in the function call and returns a

value for each expression.
2. The value that is returned for each argument is converted to the data type that is expected for that

argument. When the expected type is a sequence of zero or more atomic types, DB2 XPath uses the
following rules to convert the value to its expected type:
a. The given value is atomized into a sequence of atomic values.

160 IBM i: SQL XML Programming

b. Each item in the atomic sequence that is of type xs:untypedAtomic is cast to the expected atomic
type. For built-in functions where the expected type is specified as numeric, arguments of type
xs:untypedAtomic are cast to xs:double.

c. Numeric type promotion is applied to any numeric item in the atomic sequence that can be
promoted to the expected atomic type through numeric type promotion. Numeric items include
items of type xs:integer, xs:decimal, or xs:double.

3. The function is evaluated using the converted values of its arguments. The result of the function call
is either an instance of the function's declared return type or an error.

Example

The following example retrieves the first three characters of the pid attribute of a product document:
declare namespace pos="http://posample.org";

fn:substring(/pos:product/@pid, 1, 3)

Path expressions
Path expressions locate nodes within an XML tree. Path expressions in DB2 XPath are based on the syntax
of XPath 2.0.

A path expression consists of a series of one or more steps that are separated by either a slash character
(/) or two slash characters (//). The path expression can begin with a slash character (/), two slash
characters(//), or a step.

A slash character (/) is used to separate individual steps. Two slash characters (//) in a path expression
are expanded as /descendant-or-self::node()/, which leaves a sequence of steps separated by a slash
character (/). Each step generates a sequence of items.

The steps in a path expression are evaluated from left to right. The sequence of items that a step
generates are used as context nodes for the step that follows. For example, in the expression
description/name, the first step generates a sequence of nodes that includes all description elements.
The final step evaluates the name step once for each description item in the sequence. Each time a name
step is evaluated, it is evaluated with a different focus, until all description items have been evaluated.
The sequences that result from each evaluation of the step are merged together in document order, and
duplicate nodes are eliminated based on node identity.

Although the result of an XPath step expression is determined by evaluating the steps and predicates
from left to right, DB2 might perform the evaluation in a more efficient order. In some instances, this can
change which errors are signaled.

A slash character (/) at the beginning of a path expression means that the path is to begin at the root
node of the tree that contains the context node. That root node must be a document node.

Recommendation: Because the slash character can be used as both an operator and an operand, use
parentheses to clarify the meaning of the slash character when it is used as the first character of an
operator. For example, to specify an empty path expression as the left operand of a multiplication
operation use (/)*5 instead of /*5. The later expression causes an error. Because path expressions have
the higher precedence, DB2 interprets this expression as a path expression with a wildcard for a name
test (/*) that is followed by the token 5.

Two slash characters (//) at the beginning of a path expression establishes an initial node sequence that
contains the root of the tree in which the context node is found and all nodes descended from this root.
This node sequence is used as the input to subsequent steps in the path expression. That root node must
be a document node.

SQL XML programming 161

The value of the path expression is the combined sequence of items that results from the final step in the
path. This value is a sequence of nodes or an atomic value. A path expression that returns a mixture of
nodes and atomic values results in an error.

A step consists of an axis step or a filter expression.

Syntax

path-expression:

step
/
//

�

/ step
// step

step:

filter-expression
axis-step

Example

Use a path expression to determine which stocks have at least one bid for which the price is greater than
the price of some offer on that stock.
//stock[bid/xs:double(price) > offer/price]/@stock_id

Axis steps:

An axis step consists of three parts: an optional axis, a node test, and zero or more predicates.

The node test specifies the criteria used to select nodes. The predicates filter the sequence that is returned
by the axis step.

The result of an axis step is always a sequence of zero or more nodes, and these nodes are returned in
document order. An axis step can be either a forward step, which starts at the context node and moves
down through the XML tree, or a reverse step, which starts at the context node and moves up through the
XML tree. If the context item is not a node, then the expression results in a type error.

The unabbreviated syntax for an axis step consists of an axis name and node test that are separated by a
double colon. The syntax of an axis expression can be abbreviated by omitting the axis and using
shorthand notations.

Syntax

axis-step:

axis xmlname-test
xmlkind-test predicate-list

axis:

162 IBM i: SQL XML Programming

child ::

@
attribute ::
descendant ::
self ::
descendant-or-self ::
parent ::

xmlname-test:

xml-qualified-name
xml-wildcard

xml-wildcard:

*
xml-nsprefix:*
*:xml-ncame

xmlkind-test:

document-node ()
element (name)

*
element ()

name
*

attribute ()
name
*

processing instruction (xml-ncname)
processing-instruction-literal-string

comment ()
text ()
node ()

predicate-list:

� [expression]

Example

In the following example, child is the name of the axis and price is the name of the element nodes to be
selected on this axis.
child::price

The axis step in this example selects all price elements that are children of the context node.

SQL XML programming 163

Axes:

An axis is an optional part of an axis step that specifies a direction of movement through an XML
document.

Table 52 describes the axes that are supported in DB2 XPath.

Table 52. Supported axes in DB2 XPath

Axis Description Notes

child Returns the children of the context node. This
axis is the default.

Document nodes and element nodes are the
only nodes that have children. If the context
node is any other kind of node, or if the context
node is an empty document or element node,
then the child axis is an empty sequence. The
children of a document node or element node
may be element, processing instruction,
comment, or text nodes. Attribute and
document nodes can never appear as children.

descendant Returns the descendants of the context node
(the children, the children of the children, and
so on).

attribute Returns the attributes of the context node. This axis is empty if the context node is not an
element node.

self Returns the context node only.

descendant-or-
self

Returns the context node and the descendants of
the context node.

parent Returns the parent of the context node, or an
empty sequence if the context node has no
parent.

An element node can be the parent of an
attribute node even though an attribute node is
never a child of an element node.

DB2 XPath does not support the additional axes defined by the full axis feature of the W3 standard.

An axis can be either a forward or reverse axis. A forward axis contains the context node and nodes that
are after the context node in document order. A reverse axis contains the context node and nodes that are
before the context node in document order. In DB2 XPath, the forward axes include: child, descendant,
attribute, self, and descendant-or-self. The only supported reverse axis is the parent axis.

When an axis step selects a sequence of nodes, each node is assigned a context position that corresponds
to its position in the sequence. If the axis is a forward axis, context positions are assigned to the nodes in
document order, starting with 1. If the axis is a reverse axis, context positions are assigned to the nodes in
reverse document order, starting with 1.

Node tests:

A node test is a condition that must be true for each node that is selected by an axis step. The node test
can be expressed as a name test or a kind test. A name test selects nodes based on the name of the node.
A kind test selects nodes based on the kind of node.

Name tests

A name test consists of a QName or a wildcard. When a name test is specified in an axis step, the step
selects the nodes on the specified axis that match the QName or wildcard. If the name test is specified on
the attribute axis, the step selects any attributes that match the name test. Otherwise, on all other axes,
the step selects any elements that match the name test. For the QNames to match, the expanded QName

164 IBM i: SQL XML Programming

of the node must be equal (on a codepoint basis) to the expanded QName that is specified in the name
test. Two expanded QNames are equal if their namespace URIs are equal and their local names are equal
(even if their namespace prefixes are not equal).

Important: Any prefix that is specified in a name test must correspond to one of the statically known
namespaces for the expression. For name tests that are performed on the attribute axis, unprefixed
QNames have no namespace URI. For name tests that are performed on all other axes, unprefixed
QNames have the namespace URI of the default element namespace.

Table 53 describes the name tests that are supported in DB2 XPath.

Table 53. Supported name tests in DB2 XPath

Test Description Examples

QName Matches any nodes (on the specified axis)
whose QName is equal to the specified
QName. If the axis is an attribute axis, this test
matches attribute nodes that are equal to the
specified QName. On all other axes, this test
matches element nodes that are equal to the
specified QName.

In the expression child::para, the name test
para selects all of the para elements on the
child axis.

* Matches all nodes on the specified axis. If the
axis is an attribute axis, this test matches all
attribute nodes. On all other axes, this test
matches all element nodes.

In the expression, child::*, the name test *
matches all elements on the child axis.

Kind tests

When a kind test is specified in an axis step, the step selects only those nodes on the specified axis that
match the kind test. Table 54 describes the kind tests that are supported in DB2 XPath.

Table 54. Supported kind tests in DB2 XPath

Test Description Examples

node() Matches any node on the specified
axis.

In the expression child::node(), the
kind test node() selects any nodes on
the child axis.

text() Matches any text node on the specified
axis.

In the expression child::text(), the
kind test text() selects any text nodes
on the child axis.

comment() Matches any comment node on the
specified axis.

In the expression child::comment(),
the kind test comment() selects any
comment nodes on the child axis.

processing-instruction(NCName) Matches any processing-instruction
node (on the specified axis) whose
name (called its "PITarget" in XML)
matches the NCName that is specified
in this name test.

In the expression child::processing-
instruction(xml-stylesheet), the
kind test processing-instruction(
xml-stylesheet) selects any processing
instruction nodes on the child axis
whose PITarget is xml-stylesheet.

processing-instruction(StringLiteral) Matches any processing-instruction
node (on the specified axis) whose
name matches the string literal that is
specified in this test.

This node test provides backwards
compatibility with XPath 1.0.

In the expression child::processing-
instruction("xml-stylesheet"), the
kind test processing-
instruction("xml-stylesheet") selects
any processing instruction nodes on
the child axis whose PITarget is
xml-stylesheet.

SQL XML programming 165

Table 54. Supported kind tests in DB2 XPath (continued)

Test Description Examples

element() Matches any element node on the
specified axis.

In the expression child::element(),
the kind test element() selects any
element nodes on the child axis.

element(QName) Matches any element node (on the
specified axis) whose name matches
the qualified name that is specified in
this test.

In the expression
child::element("price"), the kind test
element("price") selects any element
nodes on the child axis whose name is
price.

element(*) Matches any element node on the
specified axis.

In the expression child::element(*),
the kind test element(*) selects any
element nodes on the child axis.

attribute() Matches any attribute node on the
specified axis.

In the expression child::attribute(),
the kind test attribute() selects any
attribute nodes on the child axis.

attribute(QName) Matches any attribute node (on the
specified axis) whose name matches
the qualified name that is specified in
this test.

In the expression
child::attribute("price"), the kind
test attribute("price") selects any
attribute nodes on the child axis whose
name is price.

attribute(*) Matches any attribute node on the
specified axis.

In the expression child::attribute(*),
the kind test attribute(*) selects any
attribute nodes on the child axis.

document-node() Matches any document node on the
specified axis.

In the expression self::document-
node(), the kind test document-node()
selects any document nodes on the self
axis.

document-node(element(QName)) Matches any document node on the
specified axis that has only one
element node.

In the expression self::document-
node(element("price")), the kind test
document-node(element("price"))
selects any document nodes on the self
axis that have a single root element
whose name is price.

document-node(element(*)) Matches any document node on the
specified axis that has element nodes.

In the expression self::document-
node(element(*)), the kind test
document-node(element(*)) selects any
document nodes on the self axis that
have element nodes.

Predicates:

A predicate consists of an expression, called a predicate expression, that is enclosed in square brackets ([]).
A predicate filters a sequence by retaining some items and discarding others.

The predicate expression is evaluated once for each item in the sequence. The result of the predicate
expression is an xs:boolean value called the predicate truth value. Those items for which the predicate
truth value is true are retained, and those for which the predicate truth value is false are discarded.

The value of the predicate expression can be a numeric value as long as its static type is a numeric
singleton. When the static type of the predicate expression is a numeric singleton, the predicate truth
value is true if the position of the context item within the sequence of items being evaluated matches the
numeric singleton. In other words: child::employee/child::address[2] is equivalent to

166 IBM i: SQL XML Programming

child::employee/child::address[fn:position() = 2] and returns the second address under employee. If
the predicate expression is a numeric that cannot be determined to be a singleton when the expression is
parsed, a not supported error will be signaled.

For all other data types, the predicate truth value is the effective boolean value of the predicate
expression. The effective boolean value is false if the predicate expression evaluates to an empty
sequence or false. Otherwise, the effective boolean value is true.

If a predicate is used to filter an atomic value or a function call, a not supported error may be signaled.

Examples

The following examples are axis steps that include predicates:
v descendant::phone[attribute::type = "work"] selects all the descendants of the context node that are

elements named phone and whose type attribute has the value "work".
v child::address[prov-state][pcode-zip] selects all the address children of the context node that have

a prov-state child element and a pcode-zip child element.

Abbreviated syntax for path expressions:

DB2 XPath provides an abbreviated syntax for expressing axes in path expressions.

Table 55 describes the abbreviations that are allowed in path expressions.

Table 55. Abbreviated syntax for path expressions

Abbreviated syntax Description

no axis specified Shorthand abbreviation for child::, except when the axis step specifies
attribute() for the node test. When the axis step specifies an attribute test, an
omitted axis is shorthand for attribute::.

@ Shorthand abbreviation for attribute:: .

// Shorthand abbreviation for /descendant-or-self::node()/, except when this
abbreviation appears at the beginning of the path expression.

When this abbreviation appears at the beginning of the path expression, the
axis step selects an initial node sequence that contains the root of the tree in
which the context node is found, plus all nodes that are descended from this
root. This expression raises an error if the root node is not a document node.

.. Shorthand abbreviation for parent::node().

Examples of abbreviated and unabbreviated syntax

Table 56 provides examples of abbreviated and unabbreviated syntax.

Table 56. Unabbreviated and abbreviated syntax compared

Unabbreviated syntax Abbreviated syntax Result

child::para para Selects the para elements that
are children of the context
node.

child::* * Selects all elements that are
children of the context node.

child::text() text() Selects all text nodes that are
children of the context node.

SQL XML programming 167

Table 56. Unabbreviated and abbreviated syntax compared (continued)

Unabbreviated syntax Abbreviated syntax Result

child::node() node() Selects all of the children of
the context node. This
expression returns no
attribute nodes, because
attributes are not children of
a node.

attribute::name @name Selects the name attribute of
the context node

attribute::* @* Selects all of the attributes of
the context node.

child::para[attribute::type="warning"] para[@type="warning"] Selects all para children of the
context node that have a type
attribute with the value
warning.

child::chapter[child::title="Introduction"] chapter[title="Introduction"] Selects the chapter children
of the context node that have
one or more title children
whose typed value is equal to
the string Introduction.

child::chapter[child::title] chapter[title] Selects the chapter children
of the context node that have
one or more title children.

Filter expressions
A filter expression consists of a primary expression that is followed by zero or more predicates. The
predicates, if present, filter the result of the primary expression.

The result of a filter expression consists of all the items that are returned by the primary expression for
which all the predicates are true. If no predicates are specified, the result is the result of the primary
expression. This result can contain nodes, atomic values, or a combination of nodes and atomic values.
The ordering of the items that are returned by a filter expression is the same as their order in the result of
the primary expression. Context positions are assigned to items based on their ordinal position in the
result sequence. The first context position is 1.

Syntax

filter-expression

�� primary-expression
predicate-list

��

Examples

The following example uses a filter expression that returns the value of $x if there is a customerinfo
element anywhere in the document that is specified by $x:
declare default element namespace "http://posample.org";

$x[.//customerinfo]

Arithmetic expressions
Arithmetic expressions perform operations that involve addition, subtraction, multiplication, division, and
modulus.

168 IBM i: SQL XML Programming

The following table describes the arithmetic operators and lists them in order of operator precedence
from highest to lowest. Unary operators have a higher precedence than binary operators unless
parentheses are used to force the evaluation of the binary operator.

Table 57. Arithmetic operators in DB2 XPath

Operator Purpose Associativity

-(unary),
+(unary)

negates value of operand, maintains value of
operand

right-to-left

*, div, idiv, mod multiplication, division, integer division,
modulus

left-to-right

+, - addition, subtraction left-to-right

Note: A subtraction operator must be preceded by whitespace if the operator could otherwise be interpreted as part
of a previous token. For example, a-b is interpreted as a name, but a - b and a -b are interpreted as arithmetic
operations.

The result of an arithmetic expression is one of the following items:
v A numeric value
v A date or time value
v A duration value
v An empty sequence
v An error

DB2 XPath uses the following process to evaluate an arithmetic expression.
1. Atomizes each operand into a sequence of atomic values.
2. Uses the following rules to evaluate the operands in the arithmetic expression:

v If the atomized operand is an empty sequence, the result of the arithmetic expression is an empty
sequence.

v If the atomized operand is a sequence that contains more than one value, an error is returned.
v If the atomized operand is an untyped atomic value (xs:untypedAtomic), DB2 XPath casts the value

to xs:double. If the cast fails, DB2 XPath returns an error.
3. If the types of the operands are a valid combination for the arithmetic operator, DB2 XPath applies

the operator to the atomized values. The result of this operation is an atomic value or a dynamic error
(for example, an error might result from dividing an xs:integer by zero).

4. If the types of the operands are not a valid combination for the arithmetic operator, DB2 XPath raises
a type error.

The following table identifies valid combinations of types for arithmetic operators. In this table, the letter
A represents the first operand in the expression, and the letter B represents the second operand. The term
numeric denotes the types xs:integer, xs:decimal, xs:double, or any types derived from one of these types.
If the result type of an operator is listed as numeric, the result type will be the first type in the ordered
list (xs:integer, xs:decimal, xs:double) into which all operands can be converted by subtype substitution
and type promotion.

SQL XML programming 169

Table 58. Valid types for operands of arithmetic expressions

Operator with operands Type of operand A Type of operand B Result type

A + B numeric numeric numeric

xs:date xs:yearMonthDuration xs:date

xs:yearMonthDuration xs:date xs:date

xs:date xs:dayTimeDuration xs:date

xs:dayTimeDuration xs:date xs:date

xs:time xs:dayTimeDuration xs:time

xs:dayTimeDuration xs:time xs:time

xs:dateTime xs:yearMonthDuration xs:dateTime

xs:yearMonthDuration xs:dateTime xs:dateTime

xs:dateTime xs:dayTimeDuration xs:dateTime

xs:dayTimeDuration xs:dateTime xs:dateTime

xs:yearMonthDuration xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration xs:dayTimeDuration xs:dayTimeDuration

A - B numeric numeric numeric

xs:date xs:date xs:dayTimeDuration

xs:date xs:yearMonthDuration xs:date

xs:date xs:dayTimeDuration xs:date

xs:time xs:time xs:dayTimeDuration

xs:time xs:dayTimeDuration xs:time

xs:dateTime xs:dateTime xs:dayTimeDuration

xs:dateTime xs:yearMonthDuration xs:dateTime

xs:dateTime xs:dayTimeDuration xs:dateTime

xs:yearMonthDuration xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration xs:dayTimeDuration xs:dayTimeDuration

A * B numeric numeric numeric

xs:yearMonthDuration numeric xs:yearMonthDuration

numeric xs:yearMonthDuration xs:yearMonthDuration

xs:dayTimeDuration numeric xs:dayTimeDuration

numeric xs:dayTimeDuration xs:dayTimeDuration

A idiv B numeric numeric xs:integer

A div B numeric numeric numeric; but xs:decimal if
both operands are xs:integer

xs:yearMonthDuration numeric xs:yearMonthDuration

xs:dayTimeDuration numeric xs:dayTimeDuration

xs:yearMonthDuration xs:yearMonthDuration xs:decimal

xs:dayTimeDuration xs:dayTimeDuration xs:decimal

A mod B numeric numeric numeric

170 IBM i: SQL XML Programming

Syntax

arithmetic expression

�� multiplicative-expression
+ multiplicative-expression
- multiplicative-expression

��

multiplicative expression

�� �

�

path_expression
+
-

* path_expression
div +
idiv -
mod

��

Examples

The following query uses an arithmetic expression to calculate the amount that buyers pay in taxes on a
product, at a rate of 8.25%, and selects the description elements for which the tax is greater than one unit
of currency.
SELECT X.* FROM T1, XMLTABLE(’declare namespace pos="http://posample.org";

/pos:product/description[price * .0825 > 1]’
PASSING T1.DESCRIPTION) X;

The following query subtracts two xs:date values, which results in the xs:yearMonthDuration value
P8559D:
SELECT * FROM XMLTABLE(’xs:date("2005-10-10") - xs:date("1982-05-05")’) X;

Comparison expressions
Comparison expressions compare two values. DB2 XPath provides one kind of comparison expression:
general comparisons.

General comparisons:

General comparisons compare two sequences of any length to determine if a comparison is true for at
least one item in both sequences. The general comparison operators include =, !=, <, <=, >, and >=.

The following table describes these operators, listed in order of operator precedence from highest to
lowest.

Table 59. General comparison operators in XPath

Operator Purpose

= Returns true if any value in the first sequence is equal to any value in the second sequence.

!= Returns true if any value in the first sequence is not equal to any value in the second
sequence.

< Returns true if any value in the first sequence is less than any value in the second sequence.

<= Returns true if any value in the first sequence is less than or equal to any value in the second
sequence.

SQL XML programming 171

Table 59. General comparison operators in XPath (continued)

Operator Purpose

> Returns true if any value in the first sequence is greater than any value in the second
sequence.

>= Returns true if any value in the first sequence is greater than or equal to any value in the
second sequence.

The result of a general comparison expression is a boolean value or an error. DB2 XPath uses the
following process to evaluate a general comparison expression.
1. Atomizes each operand into a sequence of atomic values.
2. Compares each of the values in the first sequence to each of the values in the second sequence. For

string comparisons, the default collation is used. For each comparison:
v If one of the atomic values is an instance of xs:untypedAtomic and the other is an instance of a

numeric type (xs:integer, xs:decimal, or xs:double), the untyped value is cast to the type xs:double.
v If one of the atomic values is an instance of xs:untypedAtomic and the other is an instance of

xs:untypedAtomic or xs:string, the xs:untypedAtomic values are cast to the type xs:string.
v If one of the atomic values is an instance of xs:untypedAtomic and the other is not an instance of

xs:string, xs:untypedAtomic, or any numeric type, the xs:untypedAtomic value is cast to the
dynamic type of the other value.

3. If at least one of the values in the first sequence and at least one of the values in the second sequence
meet the conditions of the comparison, the general comparison is true.

Syntax

comparison expression

�� arithmetic-expression
= arithmetic-expression
!=
<
>
<=
>=

��

Examples

The following statement uses a general comparison expression to find the descriptions of products that
cost less than 20 units.
declare namespace pos="http://posample.org";

/pos:product/description[price < 20]

Logical expressions
Logical expressions return the boolean value true if both of two expressions are true, or if one or both of
two expressions are true. The operators that are used in logical expressions include and and or.

The following table describes these operators, listed in order of operator precedence from highest to
lowest.

Table 60. Logical expression operators in XPath

Operator Purpose

and Returns true if both expressions are true.

172 IBM i: SQL XML Programming

Table 60. Logical expression operators in XPath (continued)

Operator Purpose

or Returns true if one or both expressions are true.

The result of a logical expression is a boolean value or an error. DB2 XPath uses the following process to
evaluate a logical expression.
1. Determines the effective boolean value (EBV) of each operand.
2. Applies the operator to the effective boolean values of the operands. The result is a boolean value or

an error. Table 61 shows the results that are returned by a logical expression based on the EBV of its
operands and any errors that are encountered during the evaluation of an operand.

Table 61. Results of logical expressions based on effective boolean values (EBVs) of operands

EBV of operand 1 Operator EBV of operand 2 Result

true and true true

true and false false

false and true false

false and false false

true and error error

error and true error

false and error false or error

error and false false or error

error and error error

true or true true

false or false false

true or false true

false or true true

true or error true or error

error or true true or error

false or error error

error or false error

error or error error

Syntax

logical expression

��

�

expression

and expression
or

��

Examples

The following example uses a logical expression to retrieve records for 22-inch snow shovels or 24-inch
snow shovels.

SQL XML programming 173

declare namespace pos="http://posample.org";
/pos:product/description[name = "Snow Shovel, Deluxe 24"

or name = "Snow Shovel, Basic 22"]

Regular expressions
A regular expression is a sequence of characters that act as a pattern for matching and manipulating
strings. Regular expressions are used in the fn:matches, fn:replace, and fn:tokenize functions.

Syntax

�� � �

|

character
^ . ? $

character-class-escape *
[character-group] +
(regular-expression)

��

character-group

�� � character
^ character-class-escape character

character-class-escape

��

character
In a regular expression, character is a normal XML character that is not a metacharacter.

metacharacters
Metacharacters are control characters in regular expressions. The regular expression metacharacters
that are currently supported are:

backslash (\)
Begins a character class escape. A character class escape indicates that the metacharacter that
follows is to be used as a character, instead of a metacharacter.

period (.)
Matches any single character except a newline character (\n).

carat (^)
If the carat character appears outside of a character class, the characters that follow the carat
match the start of the input string or, for multi-line input strings, the start of a line. An input
string is considered to be a multi-line input string if the function that uses the input string
includes the m flag.

If the carat character appears as the first character within a character class, the carat acts as a
not-sign. A match occurs if none of the characters in the character group appear in the string that
is being compared to the regular expression.

dollar sign ($)
Matches the end of the input string or, for multi-line input strings, the end of a line. An input
string is considered to be a multi-line input string if the function that uses the input string
includes the m flag.

question mark (?)
Matches the preceding character or character group in the regular expression zero or one time.

174 IBM i: SQL XML Programming

asterisk (*)
Matches the preceding character or character group in the regular expression zero or more times.

plus sign (+)
Matches the preceding character or character group in the regular expression one or more times.

pipe (|)
Matches the preceding character (or character group) or the following character (or character
group).

opening bracket ([) and closing bracket (])
The opening and closing brackets and the enclosed character group define a character class. For
example, the character class [aeiou] matches any single vowel. Character classes also support
character ranges. For example:
v [a-z] means any lowercase letter.
v [a-p] means any lowercase letter from a through p.
v [0-9] means any single digit.

opening parenthesis (() and closing parenthesis ())
An opening and closing parenthesis denote a grouping of some characters within a regular
expression. You can then apply an operator, such as a repetition operator, to the entire group.

The left curly brace ({) and right curly brace (}) are also metacharacters, but they are currently not
supported.

character-class-escape
A character class escape specifies that you want certain special characters to be treated as characters,
instead of performing some function. A character class escape consists of a backslash (\), followed by
a single metacharacter, newline character, return character, or tab character. The following table lists
the character class escapes.

Table 62. Single-character character class escapes

Character escape Character represented Description

\n #x0A Newline

\r #x0D Return

\t #x09 Tab

\\ \ Backslash

\| | Pipe

\. . Period

\? ? Question mark

* * Asterisk

\+ + Plus sign

\((Opening parenthesis

\)) Closing parenthesis

\{ { Opening curly brace

\} } Closing curly brace

\$ $ Dollar sign

\- - Dash

\[[Opening bracket

\]] Closing bracket

\^ ^ Caret

SQL XML programming 175

character-group
A character group is the set of characters in a character class. The character class is used for
matching. It can consist of characters, character ranges, character class escapes, and an optional
opening carat. If the carat is included, it indicates the complement of the set of characters that are
defined by the rest of character group.

Examples

The following examples demonstrate how each of the metacharacters affects a regular expression.
v "hello[0-9]world" matches "hello3world", but not "hello world".
v "^hello" matches this text:

hello world

However, "^hello" does not match this text:
world hello

v "hello$" matches this text:
world hello

However, "hello$" does not match this text:
hello world

v "(ca)|(bd)" matches "arcade" or "abdicate".
v "^((ca)|(bd))" does not match "arcade" or "abdicate".
v "w?s" matches "ws" or "s".
v "w.*s" matches "was" or "waters".
v "be+t" matches "beet" or "bet".
v "\[n\]" matches "[n]".

Descriptions of XPath functions
The DB2 XPath functions are a subset of the XPath 2.0 and XQuery 1.0 functions and operators.

These topics provide detailed reference information for the XPath functions that are supported by DB2 for
i. Functions can be used anywhere in an XPath expression where an expression is expected. The
supported functions are listed in the following tables:

Table 63. String functions

Function Description Reference

fn:compare Returns an indication of whether two strings
compare equal, less than, or greater than.

“fn:compare function” on
page 185

fn:concat Returns two or more strings concatenated into a
single string.

“fn:concat function” on page
186

fn:contains Returns an indication of whether a string contains
a given substring.

“fn:contains function” on page
187

fn:lower-case Returns a string converted to lower case. “fn:lower-case function” on
page 198

fn:matches Returns an indication of whether a string matches
a given pattern.

“fn:matches function” on page
199

fn:max Returns the maximum of the values in a sequence. “fn:max function” on page 200

fn:min Returns the minimum of the values in a sequence. “fn:min function” on page 201

fn:normalize-space Returns a string with leading and trailing
whitespace removed and each internal sequence of
whitespace characters replaced by a single blank
character.

“fn:normalize-space function”
on page 207

176 IBM i: SQL XML Programming

Table 63. String functions (continued)

Function Description Reference

fn:replace Returns a string that has characters that match a
pattern replaced with another set of characters.

“fn:replace function” on page
209

fn:starts-with Returns whether a string begins with a given
substring.

“fn:starts-with function” on
page 213

fn:string Returns the string representation of a value. “fn:string function” on page
213

fn:string-length Returns the length of a string. “fn:string-length function” on
page 214

fn:substring Returns a substring of a string. “fn:substring function” on
page 214

fn:tokenize Returns a list of substrings within a string. “fn:tokenize function” on page
217

fn:translate Returns a string with selected characters replaced
with other characters.

“fn:translate function” on
page 219

fn:upper-case Returns a string converted to uppercase “fn:upper-case function” on
page 219

Table 64. Number functions

Function Description Reference

fn:abs Returns the absolute value of a numeric value. “fn:abs function” on page 179

fn:max Returns the maximum of the values in a sequence. “fn:max function” on page 200

fn:min Returns the minimum of the values in a sequence. “fn:min function” on page 201

fn:round Returns the integer that is closest to the specified
value.

“fn:round function” on page
210

fn:sum Returns the sum of the values in a sequence. “fn:sum function” on page 215

Table 65. Boolean functions

Function Description Reference

fn:boolean Returns the effective boolean value of a sequence. “fn:boolean function” on page
185

fn:exists Returns false if the argument produces an empty
result; otherwise returns true.

“fn:exists function” on page
193

fn:not Returns false if the effective boolean value of a
sequence expression is true and returns true is the
effective boolean value of a sequence expression is
false.

“fn:not function” on page 207

Table 66. Date, time, and duration functions

Function Description Reference

fn:adjust-date-to-timezone Returns an xs:date value with its timezone adjusted
or removed.

“fn:adjust-date-to-timezone
function” on page 180

fn:adjust-dateTime-to-timezone Returns an xs:dateTime value with its timezone
adjusted or removed.

“fn:adjust-dateTime-to-
timezone function” on page
182

fn:adjust-time-to-timezone Returns an xs:time value with its timezone
adjusted or removed.

“fn:adjust-time-to-timezone
function” on page 183

SQL XML programming 177

Table 66. Date, time, and duration functions (continued)

Function Description Reference

fn:current-date Returns the current date in the implicit timezone of
UTC.

“fn:current-date function” on
page 188

fn:current-dateTime Returns the current date and time in the implicit
timezone of UTC.

“fn:current-dateTime function”
on page 188

db2-fn:current-local-date Returns the current date in the local timezone. “db2-fn:current-local-date
function” on page 188

db2-fn:current-local-dateTime Returns the current date and time in the local
timezone.

“db2-fn:current-local-dateTime
function” on page 189

db2-fn:current-local-time Returns the current time in the local timezone. “db2-fn:current-local-time
function” on page 189

fn:current-time Returns the current time in the implicit timezone of
UTC.

“fn:current-time function” on
page 190

fn:dateTime Returns an xs:dateTime value from an xs:date value
and an xs:time value.

“fn:dateTime function” on
page 190

fn:day-from-date Returns the day component of an xs:date value. “fn:day-from-date function”
on page 191

fn:day-from-dateTime Returns the day component of an xs:dateTime
value.

“fn:day-from-dateTime
function” on page 191

fn:days-from-duration Returns the days component of a duration. “fn:days-from-duration
function” on page 192

fn:hours-from-dateTime Returns the hours component of an xs:dateTime
value.

“fn:hours-from-dateTime
function” on page 194

fn:hours-from-duration Returns the hours component of a duration value. “fn:hours-from-duration
function” on page 194

fn:hours-from-time Returns the hours component of an xs:time value. “fn:hours-from-time function”
on page 195

fn:implicit-timezone Returns the implicit time zone value of PT0S which
indicates that UTC is the implicit time zone.

“fn:implicit-timezone
function” on page 196

db2-fn:local-timezone Returns the time zone of the local system. “db2-fn:local-timezone
function” on page 198

fn:max Returns the maximum of the values in a sequence. “fn:max function” on page 200

fn:min Returns the minimum of the values in a sequence. “fn:min function” on page 201

fn:minutes-from-dateTime Returns the minutes component of an xs:dateTime
value.

“fn:minutes-from-dateTime
function” on page 202

fn:minutes-from-duration Returns the minutes component of a duration. “fn:minutes-from-duration
function” on page 203

fn:minutes-from-time Returns the minutes component of an xs:time
value.

“fn:minutes-from-time
function” on page 203

fn:month-from-date Returns the months component of an xs:date value. “fn:month-from-date function”
on page 204

fn:month-from-dateTime Returns the months component of an xs:dateTime
value.

“fn:month-from-dateTime
function” on page 204

fn:months-from-duration Returns the months component of a duration. “fn:months-from-duration
function” on page 205

fn:seconds-from-dateTime Returns the seconds component of an xs:dateTime
value.

“fn:seconds-from-dateTime
function” on page 211

178 IBM i: SQL XML Programming

Table 66. Date, time, and duration functions (continued)

Function Description Reference

fn:seconds-from-duration Returns the seconds component of a duration. “fn:seconds-from-duration
function” on page 211

fn:seconds-from-time Returns the seconds component of an xs:time
value.

“fn:seconds-from-time
function” on page 212

fn:sum Returns the sum of the values in a sequence. “fn:sum function” on page 215

fn:timezone-from-date Returns the timezone component of an xs:date
value.

“fn:timezone-from-date
function” on page 215

fn:timezone-from-dateTime Returns the timezone component of an xs:dateTime
value.

“fn:timezone-from-dateTime
function” on page 216

fn:timezone-from-time Returns the timezone component of an xs:time
value.

“fn:timezone-from-time
function” on page 217

fn:year-from-date Returns the year component of an xs:date value. “fn:year-from-date function”
on page 220

fn:year-from-dateTime Returns the year component of an xs:dateTime
value.

“fn:year-from-dateTime
function” on page 220

fn:years-from-duration Returns the years component of a duration. “fn:years-from-duration
function” on page 221

Table 67. Sequence functions

Function Description Reference

fn:count Returns the number of values in a sequence. “fn:count function” on page
187

fn:data Returns a sequence of atomic values from a
sequence of items.

“fn:data function” on page 190

fn:distinct-values Returns the distinct values in a sequence. “fn:distinct-values function”
on page 193

fn:last Returns the number of values in the sequence of
items that is currently being processed.

“fn:last function” on page 196

fn:position Returns the position of the context item in a
sequence that is currently being processed.

“fn:position function” on page
208

Table 68. Node functions

Function Description Reference

fn:local-name Returns the local name property of a node. “fn:local-name function” on
page 197

fn:name Returns the prefix and local name parts of a node
name.

“fn:name function” on page
206

fn:abs function
The fn:abs function returns the absolute value of a numeric value.

Syntax

�� fn:abs(numeric-value) ��

SQL XML programming 179

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:double
v xs:decimal
v xs:integer
v A type that is derived from any of the previously listed types
v xs:untypedAtomic

If numeric-value has the xs:untypedAtomic data type, it is converted to an xs:double value.

Returned value

If numeric-value is not the empty sequence, the returned value is the absolute value of numeric-value.

If numeric-value is the empty sequence, fn:abs returns the empty sequence.

The data type of the returned value depends on the data type of numeric-value:
v If numeric-value is xs:double, xs:decimal or xs:integer, the value that is returned has the same type as

numeric-value.
v If numeric-value has a data type that is derived from xs:double, xs:decimal or xs:integer, the value that

is returned has the direct parent data type of numeric-value.
v If numeric-value has the xs:untypedAtomic data type, the value that is returned has the xs:double data

type.

Example

The following function returns the absolute value of –10.5.
fn:abs(-10.5)

The returned value is 10.5.

fn:adjust-date-to-timezone function
The fn:adjust-date-to-timezone function adjusts an xs:date value to a specific time zone, or removes the
time zone component from the value.

Syntax

�� fn:adjust-date-to-timezone(date-value)
,timezone-value

��

date-value
The date value that is to be adjusted.

date-value is of type xs:date, or is an empty sequence.

timezone-value
A duration that represents the time zone to which date-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not
have a seconds component. If timezone-value is not specified, the default value is PT0H, which
represents UTC.

180 IBM i: SQL XML Programming

Returned value

The returned value is either a value of type xs:date or an empty sequence depending on the parameters
that are specified. If date-value is not an empty sequence, the returned value is of type xs:date. The
following table describes the possible returned values:

Table 69. Types of input values and returned value for fn:adjust-date-to-timezone

date-value timezone-value Returned value

date-value that contains a time zone
component

An explicit value, or no value
specified (duration of PT0H)

The date-value adjusted for the time
zone represented by timezone-value.

date-value that contains a time zone
component

An empty sequence The date-value with no time zone
component.

date-value that does not contain a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The date-value with a time zone
component. The time zone component
is the time zone represented by
timezone-value. The date component is
not adjusted for the time zone.

date-value that does not contain a time
zone component

An empty sequence The date-value.

An empty sequence An explicit value, empty sequence, or
no value specified

An empty sequence.

When adjusting date-value to a different time zone, date-value is treated as a dateTime value with time
component 00:00:00. The returned value contains the time zone component represented by timezone-value.
The following function calculates the adjusted date value:
xs:date(fn:adjust-dateTime-to-timezone(xs:dateTime(date-value),timezone-value))

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as xs:dayTimeDuration("-
PT10H").

The following function adjusts the date value for May 7, 2009 in the UTC+1 time zone. The function
specifies a timezone-value of -PT10H.
fn:adjust-date-to-timezone(xs:date("2009-05-07+01:00"), $tz)

The returned date value is 2009-05-06-10:00. The date is adjusted to the UTC-10 time zone.

The following function adds a time zone component to the date value for March 7, 2009 without a time
zone component. The function specifies a timezone-value of -PT10H.
fn:adjust-date-to-timezone(xs:date("2009-03-07"), $tz)

The returned value is 2009-03-07-10:00. The time zone component is added to the date value.

The following function adjusts the date value for February 9, 2009 in the UTC-7 time zone. Without a
timezone-value specified, the function uses the default timezone-value PT0H.
fn:adjust-date-to-timezone(xs:date("2009-02-09-07:00"))

The returned date is 2009-02-09Z, the date is adjusted to UTC.

The following function removes the time zone component from the date value for May 7, 2009 in the
UTC-7 time zone. The timezone-value is an empty sequence.
fn:adjust-date-to-timezone(xs:date("2009-05-07-07:00"), ())

SQL XML programming 181

The returned value is 2009-05-07.

fn:adjust-dateTime-to-timezone function
The fn:adjust-dateTime-to-timezone function adjusts an xs:dateTime value to a specific time zone, or
removes the time zone component from the value.

Syntax

�� fn:adjust-dateTime-to-timezone(dateTime-value)
,timezone-value

��

dateTime-value
The dateTime value that is to be adjusted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

timezone-value
A duration that represents the time zone to which dateTime-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not
have a seconds component. If timezone-value is not specified, the default value is PT0H, which
represents UTC.

Returned value

The returned value is either a value of type xs:dateTime or is an empty sequence depending on the types
of input values. If dateTime-value is not an empty sequence, the returned value is of type xs:dateTime. The
following table describes the possible returned values:

Table 70. Types of input values and returned value for fn:adjust-dateTime-to-timezone

dateTime-value timezone-value Returned value

dateTime-value that contains a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The dateTime-value adjusted to the
time zone represented by
timezone-value. The returned value
contains the time zone component
represented by timezone-value.

dateTime-value that contains atime
zone component

An empty sequence The dateTime-value with no time zone
component.

dateTime-value that does not contain a
time zone component

An explicit value, or no value
specified (duration of PT0H)

The dateTime-value with a time zone
component. The time zone component
is the time zone represented by
timezone-value. The date and time
components are not adjusted to the
time zone.

dateTime-value that does not contain a
time zone component

An empty sequence The dateTime-value.

An empty sequence An explicit value, empty sequence, or
no value specified

An empty sequence.

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as xs:dayTimeDuration("-
PT10H").

182 IBM i: SQL XML Programming

The following function adjusts the dateTime value of March 7, 2009 at 10 a.m. in the UTC-7 time zone to
the time zone specified by time zone-value of -PT10H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00-07:00"), $tz)

The returned dateTime value is 2009-03-07T07:00:00-10:00.

The following function adjusts the dateTime value for March 7, 2009 at 10 am. The dateTime-value does
not have a time zone component, and the function specifies a timezone-value of -PT10H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00"), $tz)

The returned dateTime is 2009-03-07T10:00:00-10:00.

In the following function adjusts the dateTime value for June 4, 2009 at 10 a.m. in the UTC-7 time zone.
Without a timezone-value specified, the function uses the default time zone value of PT0H.
fn:adjust-dateTime-to-timezone(xs:dateTime("2009-06-04T10:00:00-07:00"))

The returned dateTime value is 2009-06-04T17:00:00Z, which is the dateTime value adjusted to UTC.

The following function removes the time zone component from the dateTime value for March 7, 2009 at
10 a.m. in the UTC-7 time zone. The timezone-value value is the empty sequence.
fn:adjust-dateTime-to-timezone(xs:dateTime("2009-03-07T10:00:00-07:00"), ())

The returned dateTime value is 2009-03-07T10:00:00.

fn:adjust-time-to-timezone function
The fn:adjust-time-to-timezone function adjusts an xs:time value to a specific time zone, or removes the
time zone component from the value.

Syntax

�� fn:adjust-time-to-timezone(time-value)
,timezone-value

��

time-value
The time value that is to be adjusted.

time-value is of type xs:time, or is an empty sequence.

timezone-value
A duration that represents the time zone to which time-value is to be adjusted.

timezone-value can be an empty sequence or a single value of type xs:dayTimeDuration between
-PT14H and PT14H, inclusive. The value can have an integer number of minutes and must not
have a seconds component. If timezone-value is not specified, the default value is PT0H, which
represents UTC.

Returned value

The returned value is either a value of type xs:time or an empty sequence depending on the parameters
that are specified. If time-value is not an empty sequence, the returned value is of type xs:time. The
following table describes the possible returned values:

SQL XML programming 183

Table 71. Types of input values and returned value for fn:adjust-time-to-timezone

date-value timezone-value Returned value

time-value that contains a time zone
component

An explicit value, or no value
specified (duration of PT0H)

The time-value adjusted for the time
zone represented by timezone-value.
The returned value contains the time
zone component represented by
timezone-value. If the time zone
adjustment crosses over midnight, the
change in date is ignored.

time-value that contains a time zone
component

An empty sequence The time-value with no time zone
component.

time-value that does not contain a time
zone component

An explicit value, or no value
specified (duration of PT0H)

The time-value with a time zone
component. The time zone component
is the time zone represented by
timezone-value. The time component is
not adjusted for the time zone.

time-value that does not contain a time
zone component

An empty sequence The time-value.

An empty sequence An explicit value, empty sequence, or
no value specified

An empty sequence.

Examples

In the following examples, the variable $tz is a duration of -10 hours, defined as xs:dayTimeDuration("-
PT10H").

The following function adjusts the time value for 10:00 a.m. in the UTC-7 time zone, and the function
specifies a timezone-value of -PT10H.
fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"), $tz)

The returned value is 7:00:00-10:00. The time is adjusted to the time zone represented by the duration
-PT10H.

The following function adjusts the time value for 1:00 p.m. The time value does not have a time zone
component.
fn:adjust-time-to-timezone(xs:time("13:00:00"), $tz)

The returned value is 13:00:00-10:00. The time contains a time zone component represented by the
duration -PT10H.

The following function adjusts the time value for 10:00 a.m. in the UTC-7 time zone. The function does
not specify a timezone-value and uses the default value of PT0H.
fn:adjust-time-to-timezone(xs:time("10:00:00-07:00"))

The returned value is 17:00:00Z, the time adjusted to UTC.

The following function removes the time zone component from the time value 8:00 am in the UTC-7 time
zone. The timezone-value is the empty sequence.
fn:adjust-time-to-timezone(xs:time("08:00:00-07:00"), ())

The returned value is 8:00:00.

184 IBM i: SQL XML Programming

The following example compares two times. The time zone adjustment crosses over the midnight and
cause a date change. However, fn:adjust-time-to-timezone ignores date changes.
fn:adjust-time-to-timezone(xs:time("01:00:00+14:00"), $tz)

= xs:time("01:00:00-10:00")

The returned value is true.

fn:boolean function
The fn:boolean function returns the effective boolean value of a sequence.

Syntax

�� fn:boolean(sequence-expression) ��

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

Returned value

The returned effective Boolean value (EBV) depends on the value of sequence-expression:

Table 72. EBVs returned for specific types of values

Description of value EBV returned

An empty sequence false

A sequence whose first item is a node true

A single value of type xs:boolean (or derived from
xs:boolean)

false - if the xs:boolean value is false

true - if the xs:boolean value is true

A single value of type xs:string or xs:untypedAtomic (or
derived from one of these types)

false - if the length of the value is zero

true - if the length of the value is greater than zero

A single value of any numeric type (or derived from any
numeric type)

false - if the value is NaN or is numerically equal to zero

true - if the value is not numerically equal to zero

All other values error

Note: The effective Boolean value of a sequence that contains at least one node and at least one atomic value is
nondeterministic in a query where the order is unpredictable.

Example

Example with an argument that is a single numeric value: The following function returns the effective
Boolean value of 0:
v fn:boolean(0)

The returned value is false.

fn:compare function
The fn:compare function compares two strings.

Syntax

�� fn:compare(string-1,string-2) ��

SQL XML programming 185

string-1 and string-2
The xs:string values that are to be compared. DB2 compares the numeric Unicode UTF-8 code
value of each character. The comparison is made according to the default collation.

Returned value

If string-1 and string-2 are not the empty sequence, one of the following xs:integer values is returned:

-1 If string-1 is less than string-2.

0 If string-1 is equal to string-2.

1 If string-1 is greater than string-2.

Two strings are compared by comparing the corresponding bytes of each string. If the strings do not have
the same length, the comparison is made with a temporary copy of the shorter string that has been
padded on the right with blanks so that it has the same length as the other string.

string-1 and string-2 are equal if they both have length 0 or if all corresponding bytes are equal.

If string-1 and string-2 are not equal, their relationship (that is, which has the greater value) is determined
by the comparison of the first pair of unequal bytes from the left end of the strings.

If string-1 is longer than string-2, and all bytes of string-2 are equal to the leading bytes of string-1, string-1
is greater than string-2.

If string-1 or string-2 is the empty sequence, the empty sequence is returned.

Example

The following function compares 'ABC' to 'ABD' using the default collation.
fn:compare(’ABC’, ’ABD’)

'ABC' is less than 'ABD'. The returned value is -1.

fn:concat function
The fn:concat function concatenates two or more strings into a single string.

Syntax

��

�

fn:concat(string-value,string-value)
,

, string-value

��

string-value
An xs:string value or the empty sequence.

Returned value

If all string-value arguments are the empty sequence, the returned value is the empty sequence.
Otherwise, the returned value is an xs:string value that is the concatenation of all string-value arguments
that are not the empty sequence.

186 IBM i: SQL XML Programming

Example

The following function concatenates the strings 'ABC', 'ABD', the empty sequence, and 'ABE',
fn:concat(’ABC’, ’ABD’, (), ’ABE’)

The returned value is 'ABCABDABE'.

fn:contains function
The fn:contains function determines whether a string contains a given substring.

Syntax

�� fn:contains(string,substring) ��

string The string to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string
is set to a string of length 0.

substring
The substring to search for in string.

substring has the xs:string data type, or is the empty sequence.

Returned value

The returned value depends on the values of string and substring:
v If string and substring are not the empty sequence, the returned value is true if substring occurs

anywhere within string. If substring does not occur within string, the returned value is false.
v If string is the empty sequence, the returned value is true if substring is the empty sequence or a string

of length 0.
v If substring is the empty sequence or a string of length 0, the returned value is true.

Example

The following function determines whether the string 'Test literal' contains the string 'lite'.
fn:contains(’Test literal’,’lite’)

The returned value is true.

fn:count function
The fn:count function returns the number of values in a sequence.

Syntax

�� fn:count(sequence-expression) ��

sequence-expression
A sequence that contains items of any atomic type, or an empty sequence.

Returned value

If sequence-expression is not the empty sequence, an xs:integer value that is the number of values in
sequence-expression is returned. If sequence-expression is the empty sequence, 0 is returned.

SQL XML programming 187

Example

The following function returns 1:
fn:count(5)

The following function returns the number of employees with a department ID of K55:
fn:count(//company/emp[dept/@id="K55"])

fn:current-date function
The fn:current-date function returns the current date in the implicit timezone of UTC.

Syntax

�� fn:current-date() ��

Returned value

The returned value is an xs:date value that is the current date.

Example

The following function returns the current date.
fn:current-date()

If this function were invoked on December 2, 2009, the returned value would be 2009-12-02Z.

fn:current-dateTime function
The fn:current-dateTime function returns the current date and time in the implicit timezone of UTC.

Syntax

�� fn:current-dateTime() ��

Returned value

The returned value is an xs:dateTime value that is the current date and time.

Example

The following function returns the current date and time.
fn:current-dateTime()

If this function were invoked on December 2, 2009 at 6:25 in Toronto (time zone -PT5H), the returned
value might be 2009-12-02T011:25:30.864001Z.

db2-fn:current-local-date function
The db2-fn:current-local-date function returns the current date in the local time zone.

Syntax

�� db2-fn:current-local-date() ��

188 IBM i: SQL XML Programming

Returned value

The returned value is an xs:date value that is the current date. The returned value does not include a
time zone component.

Example

The following function returns the current date.
db2-fn:current-local-date()

If this function were invoked on December 2, 2009 at 3:00 Greenwich Mean Time (GMT) and the local
time zone is Eastern Standard Time (-PT5H), the returned value would be 2009-12-01.

db2-fn:current-local-dateTime function
The db2-fn:current-local-dateTime function returns the current date and time in the local time zone.

Syntax

�� db2-fn:current-local-dateTime() ��

Returned value

The returned value is an xs:dateTime value that is the current date and time. The returned value does not
include a time zone component.

Example

The following function returns the current date and time.
db2-fn:current-local-dateTime()

If this function were invoked anywhere on December 2, 2009 at 6:25 local time, the returned value might
be 2009-12-02T06:25:30.864001.

db2-fn:current-local-time function
The db2-fn:current-local-time function returns the current time in the local time zone.

Syntax

�� db2-fn:current-local-time() ��

Returned value

The returned value is an xs:time value that is the current time. The returned value does not include a
time zone component.

Example

The following function returns the current time.
db2-fn:current-local-time()

If this function were invoked at 6:31 Greenwich Mean Time (GMT) and the local time zone is Eastern
Standard Time (-PT5H), the returned value might be 01:31:35.519001.

SQL XML programming 189

fn:current-time function
The fn:current-time function returns the current time in the implicit timezone of UTC.

Syntax

�� fn:current-time() ��

Returned value

The returned value is an xs:time value that is the current time.

Example

The following function returns the current time.
fn:current-time()

If this function were invoked at 6:31 Greenwich Mean Time, the returned value might be
06:31:35.519001Z.

fn:data function
The fn:data function converts a sequence of items to a sequence of atomic values.

Syntax

�� fn:data(sequence) ��

sequence
Any sequence, including the empty sequence.

Returned values

The returned value is a sequence of items of type xs:anyAtomicType. For each item in the sequence:
v If the item is an atomic value, the returned value is that value.
v If the item is a node, the returned value is the typed value of the node.

Example

The following function returns the typed values of all qualifying name nodes. Qualifying name nodes are
all name nodes that are children of a billTo node in the document.
fn:data(//billTo/name)

fn:dateTime function
The fn:dateTime function constructs an xs:dateTime value from an xs:date value and an xs:time value.

Syntax

�� fn:dateTime(date-value,time-value) ��

date-value
An xs:date value.

time-value
An xs:time value.

190 IBM i: SQL XML Programming

Returned value

The returned value is an xs:dateTime value with a date component that is equal to date-value and a time
component that is equal to time-value. The time zone of the result is computed as follows:
v If neither argument has a time zone, the result has no time zone.
v If exactly one of the arguments has a time zone, or if both arguments have the same time zone, the

result has this time zone.
v If the two arguments have different time zones, an error is returned.

Example

The following function returns an xs:dateTime value from an xs:date value and an xs:time value.
fn:dateTime((xs:date("2009-04-16")), (xs:time("12:30:59")))

The returned value is the xs:dateTime value 2009-04-16T12:30:59.

fn:day-from-date function
The fn:day-from-date function returns the day component of an xs:date value that is in its localized form.

Syntax

�� fn:day-from-date(date-value) ��

date-value
The date value from which the day component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer, and the value is between 1 and 31,
inclusive. The value is the day component of date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the day component of the date value for June 1, 2009.
fn:day-from-date(xs:date("2009-06-01"))

The returned value is 1.

fn:day-from-dateTime function
The fn:day-from-dateTime function returns the day component of an xs:dateTime value that is in its
localized form.

Syntax

�� fn:day-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the day component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

SQL XML programming 191

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
1 and 31, inclusive. The value is the day component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the day component of the dateTime value for January 31, 2009 at 8:00 p.m.
in the UTC+4 time zone.
fn:day-from-dateTime(xs:dateTime("2009-01-31T20:00:00+04:00"))

The returned value is 31.

fn:days-from-duration function
The fn:days-from-duration function returns the days component of a duration.

Syntax

�� fn:days-from-duration(duration-value) ��

duration-value
The duration value from which the days component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of type

xs:integer, and is the days component of duration-value cast as xs:dayTimeDuration. The returned value
is negative if duration-value is negative.

v If duration-value is of type xs:yearMonthDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The days component of duration-value cast as xs:dayTimeDuration is the integer number of days
computed as (S idiv 86400). The value S is the total number of seconds of duration-value cast as
xs:dayTimeDuration to remove the years and months components.

Examples

This function returns the days component of the duration -10 days and 0 hours.
fn:days-from-duration(xs:dayTimeDuration("-P10DT00H"))

The returned value is -10.

This function returns the days component of the duration 3 days and 55 hours.
fn:days-from-duration(xs:dayTimeDuration("P3DT55H"))

The returned value is 5. When calculating the total number of days in the duration, 55 hours is converted
to 2 days and 7 hours. The duration is equal to P5D7H which has a days component of 5 days.

192 IBM i: SQL XML Programming

fn:distinct-values function
The fn:distinct-values function returns the distinct values in a sequence.

Syntax

�� fn:distinct-values(sequence-expression) ��

sequence-expression
A sequence of atomic values or the empty sequence. The items in the sequence can have any of
the following types:
v Numeric
v String
v Date, time, or duration types

Returned value

If sequence-expression is not the empty sequence, the returned value is a sequence that contains values that
are the distinct values in sequence-expression. The types of the items in the result sequence match the types
in the input sequence. Two items are distinct if they are not equal to each other. XPath uses the following
rules to obtain a sequence of distinct values:
v If two values cannot be compared, those values are considered to be distinct.
v Values of type xs:untypedAtomic are compared using the rules for xs:string types.
v The order in which the sequence of values is returned might not be the same as the input order.
v The first value of a set of values that compare equal is returned.
v If sequence-expression is the empty sequence, the empty sequence is returned.
v For xs:double values, positive zero is equal to negative zero.
v If sequence-expression contains multiple NaN values, a single NaN value is returned.

Example

The following example returns the distinct values of node b:
<x xmlns="http://posample.org">

1a1.0A1
</x>

declare default element namespace "http://posample.org";
fn:distinct-values($d/x/b)

The result is ("1", "a", "1.0", "A").

fn:exists function
The fn:exists function can check for the existence of many different types of items, such as elements,
attributes, text nodes, atomic values (for example, an integer), or XML documents. If the expression
specified as its argument produces an empty result (the empty sequence), then fn:exists returns false. If
the argument returns anything but the empty sequence, then fn:exists returns true.

Syntax

�� fn:exists(sequence-expression) ��

sequence-expression
Any sequence of any type, or the empty sequence.

SQL XML programming 193

Returned value

The returned value is true if sequence-expression is not the empty sequence. If sequence-expression produces
the empty sequence, the returned value is false.

Examples

Example 1: Check whether there is a customer element with a child element of phone. If there is, the
fn:exists function returns true:
fn:exists($info/customer/phone)

Example 2: Check whether there is a customer element which has an attribute of Cid. If there is, the
fn:exists function returns true:
fn:exists($info/customer/@Cid)

Example 3: Check whether the comment element has a text node. In this example, if the comment
element is an empty element it has no text node, so fn:exists returns false. Also, if there is no comment
element at all, fn:exists returns false.
fn:exists($info/comment/text())

Example 4: Check whether there is any XML document in the XML column INFO of the CUSTOMER
table. If there is, the fn:exists function returns true:
fn:exists(db2-fn:xmlcolumn("CUSTOMER.INFO"))

fn:hours-from-dateTime function
The fn:hours-from-dateTime function returns the hours component of an xs:dateTime value that is in its
localized form.

Syntax

�� fn:hours-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the hours component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
0 and 23, inclusive. The value is the hours component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the hours component of the dateTime value for January 31, 2009 at 2:00
p.m. in the UTC-8 time zone.
fn:hours-from-dateTime(xs:dateTime("2009-01-31T14:00:00-08:00"))

The returned value is 14.

fn:hours-from-duration function
The fn:hours-from-duration function returns the hours component of a duration value.

194 IBM i: SQL XML Programming

Syntax

�� fn:hours-from-duration(duration-value) ��

duration-value
The duration value from which the hours component is to be extracted.

duration-value is an empty sequence or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of type

xs:integer, and is a value between -23 and 23, inclusive. The value is the hours component of
duration-value cast as xs:dayTimeDuration. The value is negative if duration-value is negative.

v If duration-value is of type xs:yearMonthDuration, the returned value is of type xs:integer and is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The hours component of duration-value cast as xs:dayTimeDuration is the integer number of hours
computed as ((S mod 86400) idiv 3600). The value S is the total number of seconds of duration-value
cast as xs:dayTimeDuration to remove the days and months component. The value 86400 is the number
of seconds in a day, and 3600 is the number of seconds in an hour.

Example

The following function returns the hours component of the duration 126 hours.
fn:hours-from-duration(xs:dayTimeDuration("PT126H"))

The returned value is 6. When calculating the total number of hours in the duration, 126 hours is
converted to 5 days and 6 hours. The duration is equal to P5DT6H which has an hours component of 6
hours.

fn:hours-from-time function
The fn:hours-from-time function returns the hours component of an xs:time value that is in its localized
form.

Syntax

�� fn:hours-from-time(time-value) ��

time-value
The time value from which the hours component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is not an empty sequence, the returned value is of type xs:integer, and the value is between 0
and 23, inclusive. The value is the hours component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

SQL XML programming 195

Example

The following function returns the hours component of the time value for 9:30 a.m. in the UTC-8 time
zone.
fn:hours-from-time(xs:time("09:30:00-08:00"))

The returned value is 9.

fn:implicit-timezone function
The fn:implicit-timezone function returns the time zone that is used when a date, time, or dateTime value
that does not have a time zone is used in a comparison or arithmetic operation.

The implicit time zone is the value of PT0S.

Syntax

�� fn:implicit-timezone() ��

Returned value

The returned implicit time zone value has type xs:dayTimeDuration.

Example

The following function returns xs:dayTimeDuration("PT0S"):
fn:implicit-timezone()

fn:last function
The fn:last function returns the number of values in the sequence of items that is currently being
processed.

Syntax

�� fn:last() ��

Returned value

If the sequence that is currently being processed is not the empty sequence, the returned value is an
xs:integer value that is the number of values in the sequence. If the sequence that is currently being
processed is the empty sequence, the returned value is the empty sequence.

In the following cases, an error is returned:
v fn:last is separated from its context item by "/" or "//".

For example, the following expressions are not supported:
/a/b/c/fn:last
/a/b/[c/fn:last=3]

v The context node has a descendant axis or descendant-or-self axis.
For example, the following expression is not supported:
/a/b/descendant::c[fn:last()=1]

v The context node is a filter expression, and the filter expression has a step with a descendant axis or
descendant-or-self axis, or a nested filter expression.
For example, the following expression is not supported:

196 IBM i: SQL XML Programming

/a/(b/descendant::c)[fn:last()=1]

Example

In the sample CUSTOMER table, the customer document for customer 1003 looks like this:
<customerinfo xmlns="http://posample.org" Cid="1003">

<name>Robert Shoemaker</name>
<addr country="Canada">

<street>1596 Baseline</street>
<city>Aurora</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N8X-7F8</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>
<phone type="home">416-555-2937</phone>
<phone type="cell">905-555-8743</phone>
<phone type="cottage">613-555-3278</phone>

</customerinfo>

The following query retrieves one row with an xml value for the last phone number in the document.
The query uses the fn:last function to determine the number of phone number items, and then uses the
fn:last result to point to the last phone number.
SELECT X.* FROM CUSTOMER, XMLTABLE

(’declare default element namespace "http://posample.org";
$D/customerinfo/phone[fn:last()]’

PASSING CUSTOMER.INFO AS "D") X WHERE CID=1003

The returned row contains a single XML column with a value of <phone type="cottage">613-555-3278</
phone>.

fn:local-name function
The fn:local-name function returns the local name property of a node.

Syntax

�� fn:local-name()
node

��

node The node for which the local name is to be retrieved. If node is not specified, fn:local-name is
evaluated for the current context node.

Returned value

The returned value is an xs:string value. The value depends on whether node is specified, and the value
of node:
v If node is not specified, the local name of the context node is returned.
v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is a document node, a comment, or a text node. These nodes have no name.

v In the following cases, an error is returned:
– The context node is undefined.
– The context item is not a node.
– node is a sequence of more than one node.

v Otherwise, an xs:string value is returned that contains the local name part of the expanded name for
node.

SQL XML programming 197

Examples

The following example returns the local name for node b.
SELECT * FROM XMLTABLE(’fn:local-name($d/x/b)’

PASSING XMLPARSE(DOCUMENT
’<x><c></c></x>’)
AS "d"

COLUMNS RESULTNAME VARCHAR(100) PATH ’http://posample.org’) X

The returned value is "b".

The following example demonstrates that fn:localname() with no argument returns the context node.

In a sample CUSTOMER table, the customer document for customer 1001 looks like this:
<customerinfo xmlns="http://posample.org" Cid="1001">

<name>Kathy Smith</name>
<addr country="Canada">

<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>

</customerinfo>

The following example returns the local name for the context node.
SELECT XV.* FROM CUSTOMER,

XMLTABLE(XMLNAMESPACES(DEFAULT ’http://posample.org’),
’$X/customerinfo/*[fn:last()]/fn:local-name()’
PASSING CUSTOMER.INFO AS "X")
COLUMNS LOCALNAME CLOB(1K) PATH ’.’) XV

WHERE CID=1001

The returned value is "phone".

db2-fn:local-timezone function
The db2-fn:local-timezone function returns the time zone of the local system.

Syntax

�� db2-fn:local-timezone() ��

Returned value

The returned value is an xs:dayTimeDuration value that represents the local time zone offset from
Coordinated Universal Time (UTC).

Example

The following function returns the local time zone.
db2-fn:local-timezone()

If you invoke this function in the local time zone of Eastern Standard Time, the returned value is -PT5HI.

fn:lower-case function
The fn:lower-case function converts a string to lowercase.

198 IBM i: SQL XML Programming

Syntax

�� fn:lower-case(source-string) ��

source-string
The string that is to be converted to lowercase.

source-string is of type xs:string, or is the empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is an xs:string value that is source-string,
with each character converted to its lowercase correspondent. Every character that does not have a
lowercase correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Example

The following function converts the string "Wireless Router TB2561" to lowercase:
fn:lower-case("Wireless Router TB2561")

The returned value is "wireless router tb2561".

fn:matches function
The fn:matches function determines whether a string matches a given pattern.

Syntax

�� fn:matches(source-string,pattern)
,flags

��

source-string
A string that is compared to a pattern.

source-string is a literal string, or an XPath expression that resolves to an xs:string value or the
empty sequence.

pattern A regular expression that is compared to source-string. A regular expression is a set of characters,
pattern-matching characters, and operators that define a string or group of strings in a search
pattern.

pattern is string literal.

flags A string literal that can contain any of the following values that control matching of pattern to
source-string:

s Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line
character (#x0A).

m Indicates that the caret (^) matches the start of any line (the position after a new line
character), and the dollar sign ($) matches the end of any line (the position before a new
line character).

If the m flag is not specified, the caret (^) matches the start of the entire string, and the
dollar sign ($) matches the end of the entire string.

SQL XML programming 199

i Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through
"Z".

If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are
ignored, unless they are within a character class. Whitespace characters in a character
class are never ignored.

If the x flag is not specified, whitespace characters are used for matching.

Returned value

If source-string is not the empty sequence, the returned value is an xs:boolean value that is true if
source-string matches pattern. The returned value is false if source-string does not match pattern.

The rules for matching are:
v If pattern does not contain the string-starting or line-starting character caret (^), or the string-ending or

line-ending character dollar sign ($), source-string matches pattern if any substring of source-string
matches pattern.

v If pattern contains the string-starting or line-starting character caret (^), source-string matches pattern
only if source-string matches pattern from the beginning of source-string or the beginning of a line in
source-string.

v If pattern contains the string-ending or line-ending character dollar sign ($), source-string matches
pattern only if source-string matches pattern at the end of source-string or at the end of a line of
source-string.

v The m flag determines:
– Whether a match occurs from the beginning of the string or the beginning of a line
– Whether a match occurs from the end of the string or the end of a line.

If source-string is the empty sequence, source-string is considered to be a string of length 0, and
source-string matches pattern if pattern matches a string of length 0.

Examples

Example of matching a pattern to any substring within a string: The following function determines
whether the strings "ac" or "bd" appear anywhere within the string "abbcacadbdcd".
fn:matches("abbcacadbdcd","(ac)|(bd)")

The returned value is true.

Example of matching a pattern to an entire string: The following function determines whether the
strings "ac" or "bd" match the string "bd". The caret (^) character and the dollar sign ($) character indicate
that the match must start at the beginning of the source string and end at the end of the source string.
fn:matches("bd","^(ac)|(bd)$")

The returned value is true.

fn:max function
The fn:max function returns the maximum of the values in a sequence.

Syntax

�� fn:max(sequence-expression) ��

200 IBM i: SQL XML Programming

sequence-expression
The empty sequence, or a sequence in which all of the items are one of the following types:
v Numeric
v String
v xs:date
v xs:dateTime
v xs:time
v xs:dayTimeDuration
v xs:yearMonthDuration

Input items of type xs:untypedAtomic are cast to xs:double. Numeric input items are converted to
the least common type that can be compared by a combination of type promotion and subtype
substitution.

Returned value

If sequence-expression is not the empty sequence, the returned value is a value of type xs:anyAtomicType
that is the maximum of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the common data type to which the items in
sequence-expression are promoted.

If sequence-expression contains one item, that item is returned. If sequence-expression is the empty sequence,
the empty sequence is returned. If the sequence includes the value NaN, NaN is returned.

Example

The following query returns a single row that contains a value of type double that is the maximum of the
sequence (500, 1.0E2, 40.5).
SELECT * FROM
XMLTABLE (XMLNAMESPACES (DEFAULT ’http://posample.org’),

’$d’
PASSING XMLPARSE(DOCUMENT ’<x xmlns="http://posample.org">

5001.0E240.5</x>’) AS "d"
COLUMNS RES DOUBLE PATH ’fn:max(x/b)’) X

The values are promoted to the xs:double data type. The function returns the xs:double value 5.0E2,
which is then converted to the SQL double data type.

fn:min function
The fn:min function returns the minimum of the values in a sequence.

Syntax

�� fn:min(sequence-expression) ��

sequence-expression
The empty sequence, or a sequence in which all of the items are one of the following types:
v Numeric
v String
v xs:date
v xs:dateTime
v xs:time
v xs:dayTimeDuration

SQL XML programming 201

v xs:yearMonthDuration

Input items of type xs:untypedAtomic are cast to xs:double. Numeric input items are converted to
the least common type that can be compared by a combination of type promotion and subtype
substitution.

Returned value

If sequence-expression is not the empty sequence, the returned value is a value of type xs:anyAtomicType
that is the minimum of the values in sequence-expression. The data type of the returned value is the same
as the data type of the items in sequence-expression, or the common data type to which the items in
sequence-expression are promoted.

If sequence-expression contains one item, that item is returned. If sequence-expression is the empty sequence,
the empty sequence is returned. If the sequence includes the value NaN, NaN is returned.

Example

The following query returns the minimum of the sequence (500, 1.0E2, 40.5).
SELECT * FROM
XMLTABLE (XMLNAMESPACES (DEFAULT ’http://posample.org’),

’$d’
PASSING XMLPARSE(DOCUMENT ’<x xmlns="http://posample.org">

5001.0E240.5</x>’) AS "d"
COLUMNS RES DOUBLE PATH ’fn:min(x/b)’) X

The values are promoted to the xs:double data type. The function returns the xs:double value 4.05E1,
which is then converted to the SQL double data type.

fn:minutes-from-dateTime function
The fn:minutes-from-dateTime function returns the minutes component of an xs:dateTime value that is in
its localized form.

Syntax

�� fn:minutes-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the minutes component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
0 and 59, inclusive. The value is the minutes component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the minutes component from the dateTime value for January 23, 2009 at
9:42 a.m. in the UTC-8 time zone.
fn:minutes-from-dateTime(xs:dateTime("2009-01-23T09:42:00-08:00"))

The returned value is 42.

202 IBM i: SQL XML Programming

fn:minutes-from-duration function
The fn:minutes-from-duration function returns the minutes component of a duration.

Syntax

�� fn:minutes-from-duration(duration-value) ��

duration-value
The duration value from which the minutes component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:dayTimeDuration or is of type xs:duration, the returned value is of type

xs:integer and is a value between -59 and 59, inclusive. The value is the minutes component of
duration-value cast as xs:dayTimeDuration. The value is negative if duration-value is negative.

v If duration-value is of type xs:yearMonthDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The minutes component of duration-value cast as xs:dayTimeDuration is the integer number of minutes
computed as ((S mod 3600) idiv 60). The value S is the total number of seconds of duration-value cast as
xs:dayTimeDuration to remove the years and months components.

Example

The following function returns the minutes component of the duration 2 days, 16 hours, and 93 minutes.
fn:minutes-from-duration(xs:dayTimeDuration("P2DT16H93M"))

The returned value is 33. When calculating the total number of minutes in the duration, 93 minutes is
converted to 1 hour and 33 minutes. The duration is equal to P2DT17H33M which has a minutes
component of 33 minutes.

fn:minutes-from-time function
The fn:minutes-from-time function returns the minutes component of an xs:time value that is in its
localized form.

Syntax

�� fn:minutes-from-time(time-value) ��

time-value
The time value from which the minutes component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is of type xs:time, the returned value is of type xs:integer, and the value is between 0 and 59,
inclusive. The value is the minutes component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

SQL XML programming 203

Example

The following function returns the minutes component of the time value for 8:59 a.m. in the UTC-8 time
zone.
fn:minutes-from-time(xs:time("08:59:00-08:00"))

The returned value is 59.

fn:month-from-date function
The fn:month-from-date function returns the month component of a xs:date value that is in its localized
form.

Syntax

�� fn:month-from-date(date-value) ��

date-value
The date value from which the month component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer, and the value is between 1 and 12,
inclusive. The value is the month component of date-value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the month component of the date value for December 1, 2009.
fn:month-from-date(xs:date("2009-12-01"))

The returned value is 12.

fn:month-from-dateTime function
The fn:month-from-dateTime function returns the month component of an xs:dateTime value that is in its
localized form.

Syntax

�� fn:month-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the month component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer, and the value is between
1 and 12, inclusive. The value is the month component of dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

204 IBM i: SQL XML Programming

Example

The following function returns the month component of the dateTime value for October 31, 2009 at 8:15
a.m. in the UTC-8 time zone.
fn:month-from-dateTime(xs:dateTime("2009-10-31T08:15:00-08:00"))

The returned value is 10.

fn:months-from-duration function
The fn:months-from-duration function returns the months component of a duration value.

Syntax

�� fn:months-from-duration(duration-value) ��

duration-value
The duration value from which the months component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:duration or is of type xs:yearMonthDuration, the returned value is of type

xs:integer, and is a value is between -11 and 11, inclusive. The value is the months component of
duration-value cast as xs:yearMonthDuration. The value is negative if duration-value is negative.

v If duration-value is of type xs:dayTimeDuration, the returned value is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The months component of duration-value cast as xs:yearMonthDuration is the integer number of months
remaining from the total number of months of duration-value divided by 12.

Examples

The following function returns the months component of the duration 20 years and 5 months.
fn:months-from-duration(xs:duration("P20Y5M"))

The returned value is 5.

The following function returns the months component of the yearMonthDuration -9 years and -13
months.
fn:months-from-duration(xs:yearMonthDuration("-P9Y13M"))

The returned value is -1. When calculating the total number of months in the duration, -13 months is
converted to -1 year and -1 month. The duration is equal to -P10Y1M which has a month component of
-1 month.

The following function returns the months component of the duration 14 years, 11 months, 40 days, and
13 hours.
xquery fn:months-from-duration(xs:duration("P14Y11M40DT13H"))

The returned value is 11.

SQL XML programming 205

fn:name function
The fn:name function returns the prefix and local name parts of a node name.

Syntax

�� fn:name()
node

��

node The qualified name of a node for which the name is to be retrieved. If node is not specified,
fn:name is evaluated for the current context node.

Returned value

The returned value is an xs:string value. The value depends on the value of node:
v If node meets any of the following conditions, a string of length 0 is returned:

– node is the empty sequence.
– node is a document node, a comment, or a text node. These nodes have no name.

v In the following cases, an error is returned:
– The context node is undefined.
– The context item is not a node.
– node is a sequence of more than one node.

v Otherwise, an xs:string value is returned that contains the prefix (if present) and local name for node.

Example

The following example returns one row containing a CLOB column containing the qualified name for
each b node.
SELECT * FROM
XMLTABLE (’declare namespace ns1="http://posample.org";

$d/x/ns1:b/fn:name(.)’
PASSING XMLPARSE(DOCUMENT

’<x xmlns:n="http://posample.org">
<n:b><n:c></n:c></n:b></x>’)

AS "d")
COLUMNS COL1 CLOB(1K) PATH(.)) X

The returned value is "n:b".

The following example demonstrates that fn:name() with no argument returns the context node.

In the sample CUSTOMER table, the customer document for customer 1001 looks like this:
<customerinfo xmlns="http://posample.org" Cid="1001">

<name>Kathy Smith</name>
<addr country="Canada">

<street>25 EastCreek</street>
<city>Markham</city>
<prov-state>Ontario</prov-state>
<pcode-zip>N9C 3T6</pcode-zip>

</addr>
<phone type="work">905-555-7258</phone>

</customerinfo>

The following example returns the qualified name for the context node.

206 IBM i: SQL XML Programming

SELECT * FROM CUSTOMER,
XMLTABLE(’declare default element namespace "http://posample.org";

$X/customerinfo/phone/fn:name()’
PASSING INFO AS "X")
COLUMNS RESULT1 CLOB(1K) PATH ’.’) X

WHERE CID=1001

The returned value is "phone".

fn:normalize-space function
The fn:normalize-space function strips leading and trailing whitespace characters from a string and
replaces multiple consecutive whitespace characters in the string with a single blank character.

Syntax

�� fn:normalize-space()
source-string

��

source-string
A string in which whitespace is to be normalized.

source-string is an xs:string value or the empty sequence.

If source-string is not specified, the argument of fn:normalize-space is the current context item,
which is converted to an xs:string value by using the fn:string function.

Returned value

The returned value is the xs:string value that results when the following operations are performed on
source-string:
v Leading and trailing whitespace characters are removed.
v Each internal sequence of one or more adjacent whitespace characters is replaced by a single space

(U+0020) character.

Whitespace characters are the space character, (U+0020), carriage return, (U+000D), line feed, (U+000A),
and tab (U+0009).

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function removes extra whitespace characters from the string "a b c d ".
fn:normalize-space(" a b c d ")

The returned value is "a b c d".

fn:not function
The fn:not function returns false if the effective boolean value of a sequence expression is true. fn:not
returns true if the effective boolean value of a sequence expression is false.

Syntax

�� fn:not(sequence-expression) ��

sequence-expression
Any sequence that contains items of any type, or the empty sequence.

SQL XML programming 207

Returned value

The returned value is an xs:boolean value. If the effective boolean value of sequence-expression is false, this
function returns true. If the effective boolean value of sequence-expression is true, this function returns
false.

Example

The following function returns true:
fn:not("a"="b")

The following function returns false:
fn:not("false")

fn:position function
The fn:position function returns the position of the context item in the sequence that is currently being
processed.

The position function is typically used in a predicate. However it can also be used to produce the
position of each occurrence of its context item.

Syntax

�� fn:position() ��

Returned value

The returned value is an xs:integer value that indicates the position of the context item in the sequence
that is currently being processed. The first item in the sequence has position 1. If the context item is
undefined, an error is returned. The position function returns a deterministic result only if the sequence
that contains the context item has a deterministic order.

In the following cases, an error is returned:
v The context step is the descendant or descendant-or-self axis
v The context is a sequence of atomic values
v fn:position occurs as part of a nested filter expression within a predicate. I

$x/a[$y/c/fn:position()] $x/a[(b/c)[2]]

Examples

The following query returns one row that contains an XML column with the second element in the
sequence of <c> elements in the document.
<x xmlns="http://posample.org"><c>x</c><c>y</c><c>z</c></x>

SELECT * FROM
XMLTABLE(XMLNAMESPACES(DEFAULT ’http://posample.org’),

’$d/x/b/c[fn:position()=2]’
PASSING XMLPARSE(DOCUMENT ’<x xmlns="http://posample.org">

<c>x</c><c>y</c><c>z</c></x>’) AS "d"
COLUMNS RESULT XML PATH ’.’) X

The returned value is <c>y</c>.

The following query returns the position of each occurrence of <a><c> as a single XML value.

208 IBM i: SQL XML Programming

SELECT * FROM
XMLTABLE(’.’

PASSING XMLPARSE(DOCUMENT
’<a><c>c1</c><c>c2</c><c>c3</c>’)

COLUMNS RESULT_POS XML PATH ’/a/b/c/fn:position()’) X

The returned value is "1 2 3".

fn:replace function
The fn:replace function compares each set of characters within a string to a given pattern. fn:replace
replaces the characters that match the pattern with another set of characters.

Syntax

�� fn:replace(source-string,pattern,replacement-string)
,flags

��

source-string
A string that contains characters that are to be replaced.

source-string is a literal string, or an Xpath expression that resolves to an xs:string value or the
empty sequence.

pattern A regular expression that is compared to source-string. A regular expression is a set of characters,
pattern-matching characters, and operators that define a string or group of strings in a search
pattern.

pattern is string literal.

replacement-string
A string that contains characters that replace characters that match pattern in source-string.

replacement-string is an xs:string value. A literal $ symbol must be written as \$. A literal \ symbol
must be written as \\.

flags A string literal that can contain any of the following values that control matching of pattern to
source-string:

s Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line
character (#x0A).

m Indicates that the caret (^) matches the start of any line (the position after a new line
character), and the dollar sign ($) matches the end of any line (the position before a new
line character).

If the m flag is not specified, the caret (^) matches the start of the entire string, and the
dollar sign ($) matches the end of the entire string.

i Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through
"Z".

If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are
ignored, unless they are within a character class. Whitespace characters in a character
class are never ignored.

If the x flag is not specified, whitespace characters are used for matching.

SQL XML programming 209

Returned value

If source-string is not the empty sequence, the returned value is an xs:string value that results when the
following operations are performed on a copy of source-string:
v source-string is searched for characters that match pattern.

– If two overlapping substrings of source-string match pattern, only the substring whose first character
comes first in source-string is considered to match pattern.

– If pattern contains two or more alternative sets of characters, and the alternative sets of characters
match characters that start at the same position in source-string, the first set of characters in pattern
that matches characters in source-string is considered to match pattern.

v Each set of characters in source-string that matches pattern is replaced with replacement-string.

If pattern is not found in source-string, source-string is returned.

If pattern matches a string of length zero, an error is returned.

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function replaces all instances of "a" followed by any single character or "b" followed by
any single character with "*@".
fn:replace("abbcacadbdcd","(a(.))|(b(.))","*@")

The returned value is "*@*@*@*@*@cd".

fn:round function
The fn:round function returns the integer that is closest to the specified numeric value.

Syntax

�� fn:round(numeric-value) ��

numeric-value
An atomic value or an empty sequence.

If numeric-value is an atomic value, it has one of the following types:
v xs:double
v xs:decimal
v xs:integer
v A type that is derived from any of the previously listed types

Returned value

If numeric-value is not the empty sequence, the returned value is the integer that is closest to
numeric-value. The data type of the returned value depends on the data type of numeric-value:
v If numeric-value is xs:double, xs:decimal or xs:integer, the value that is returned has the same type as

numeric-value.
v If numeric-value has a data type that is derived from xs:double, xs:decimal or xs:integer, the value that

is returned has the direct parent data type of numeric-value.

If numeric-value is the empty sequence, the returned value is the empty sequence.

210 IBM i: SQL XML Programming

Examples

Example with a positive argument: The following function returns the rounded value of 0.5:
fn:round(0.5)

The returned value is 1.

Example with a negative argument: The following function returns the rounded value of (-1.5):
fn:round(-1.5)

The returned value is -1.

fn:seconds-from-dateTime function
The fn:seconds-from-dateTime function returns the seconds component of an xs:dateTime value that is in
its localized form.

Syntax

�� fn:seconds-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the seconds component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:decimal, and the value is greater
than or equal to 0 and less than 60. The value is the seconds and fractional seconds component of
dateTime-value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Examples

The following function returns the seconds component of dateTime value for February 8, 2009 at 2:16:23
p.m. in the UTC-8 time zone.
fn:seconds-from-dateTime(xs:dateTime("2009-02-08T14:16:23-08:00"))

The returned value is 23.

The following function returns the seconds component of dateTime value for June 23, 2009 at 9:16:20.43
a.m. in the UTC time zone.
fn:seconds-from-dateTime(xs:dateTime("2009-06-23T09:16:20.43Z"))

The returned value is 20.43.

fn:seconds-from-duration function
The fn:seconds-from-duration function returns the seconds component of a duration.

Syntax

�� fn:seconds-from-duration(duration-value) ��

SQL XML programming 211

duration-value
The duration value from which the seconds component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:dayTimeDuration, or is of type xs:duration, the returned value is of type

xs:decimal, and is a value greater than -60 and less than 60. The value is the seconds and fractional
seconds component of duration-value cast as xs:dayTimeDuration. The value is negative if duration-value
is negative.

v If duration-value is of type xs:yearMonthDuration, the returned value is of type xs:integer and is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The seconds and fractional seconds component of duration-value cast as xs:dayTimeDuration is computed
as (S mod 60). The value S is the total number of seconds and fractional seconds of duration-value cast as
xs:dayTimeDuration to remove the years and months components.

Example

The following function returns the seconds component of the duration 150.5 seconds.
fn:seconds-from-duration(xs:dayTimeDuration("PT150.5S"))

The returned value is 30.5. When calculating the total number of seconds in the duration, 150.5 seconds is
converted to 2 minutes and 30.5 seconds. The duration is equal to PT2M30.5S which has a seconds
component of 30.5 seconds.

fn:seconds-from-time function
The fn:seconds-from-time function returns the seconds component of an xs:time value that is in its
localized form.

Syntax

�� fn:seconds-from-time(time-value) ��

time-value
The time value from which the seconds component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is of type xs:time, the returned value is of type xs:decimal, and the value is greater than or
equal to zero and less than 60. The value is the seconds and fractional seconds component of time-value.

If time-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the seconds component of the time value for 08:59:59 a.m. in the UTC-8
time zone.
fn:seconds-from-time(xs:time("08:59:59-08:00"))

212 IBM i: SQL XML Programming

The returned value is 59.

fn:starts-with function
The fn:starts-with function determines whether a string begins with a given substring. The substring is
matched using the default collation.

Syntax

�� fn:starts-with(string,substring) ��

string The string in which to search for substring.

string has the xs:string data type, or is the empty sequence. If string is the empty sequence, string
is set to a string of length 0.

substring
The substring to search for.

substring has the xs:string data type, or is the empty sequence.

Returned value

The returned value is the xs:boolean value true if either of the following conditions are satisfied:
v substring occurs at the beginning of string.
v substring is an empty sequence or a string of length zero.

Otherwise, the returned value is false.

Example

The following function determines whether the string 'Test literal' begins with the string 'lite'.
fn:starts-with(’Test literal’,’lite’)

The returned value is false.

fn:string function
The fn:string function returns the string representation of a value.

Syntax

�� fn:string()
value

��

value The value that is to be represented as a string.

value is a node or an atomic value, or is the empty sequence.

If value is not specified, fn:string is evaluated for the current context item. If the current context
item is undefined, an error is returned.

Returned value

If value is not the empty sequence, an xs:string value is returned:
v If value is a node, the returned value is the string value property of the value node.
v If value is an atomic value, the returned value is the result of casting value to the xs:string type.

If value is the empty sequence, the result is a string of length 0.

SQL XML programming 213

Example

The following function returns the string representation of 123:
fn:string(xs:integer(123))

The returned value is '123'.

fn:string-length function
The fn:string-length function returns the length of a string.

Syntax

�� fn:string-length()
source-string

��

source-string
The string for which the length is to be returned.

source-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not the empty sequence, the returned value is an xs:integer value that is the number of
characters in source-string.

If source-string is the empty sequence, the returned value is the xs:integer value 0.

If source-string is not specified, the argument of fn:string-length defaults to the string value of the context
item. If the context item is undefined, an error is raised.

Example

The following function returns the length of the string "Test literal".
fn:string-length("Test literal")

The returned value is 12.

fn:substring function
The fn:substring function returns a substring of a string.

Syntax

�� fn:substring(source-string,start)
,length

��

source-string
The string from which the substring is retrieved.

source-string has the xs:string data type, or is an empty sequence.

start The starting position in source-string of the substring. The first position of source-string is 1. If
start<=0, start is set to 1.

start has the xs:double data type.

length The length of the substring. The default for length is the length of source-string. If start+length-1 is
greater than the length of source-string, length is set to (length of source-string)-start+1.

214 IBM i: SQL XML Programming

length has the xs:double data type.

Returned value

If source-string is not the empty sequence, the returned value is an xs:string value that is the substring of
source-string that starts at position start and is length bytes. If source-string is the empty sequence, the
result is a string of length 0.

Example

The following function returns seven characters starting at the sixth character of the string 'Test literal'.
fn:substring(’Test literal’,6,7)

The returned value is 'literal'.

fn:sum function
The fn:sum function returns the sum of the values in a sequence.

Syntax

�� fn:sum(sequence-expression) ��

sequence-expression
A sequence that contains items of any of the following atomic types, or an empty sequence:
v xs:double
v xs:decimal
v xs:integer
v A type that is derived from any of the previously listed types
v xs:dayTimeDuration
v xs:yearMonthDuration
v xs:untypedAtomic

All values in the sequence must be of the same type or a derived type of the type, or must be
promotable to a single common type. An xs:untypedAtomic value is promoted to the xs:double
data type. A derived type is promoted to its direct parent data type.

Returned value

If sequence-expression is not the empty sequence, the returned value is the sum of the values in
sequence-expression. The data type of the returned value is the same as the data type of the items in
sequence-expression, or the data type to which the items in sequence-expression are promoted.

If sequence-expression is the empty sequence, fn:sum returns 0.0E0.

Example

The following function returns the sum of the sequence (500, 1.0E2, 40.5):
fn:sum((500, 1.0E2, 40.5))

The values are promoted to the xs:double data type. The returned value is 6.405E2.

fn:timezone-from-date function
The fn:timezone-from-date function returns the time zone component of an xs:date value.

SQL XML programming 215

Syntax

�� fn:timezone-from-date(date-value) ��

date-value
The date value from which the time zone component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date and has an explicit time zone component, the returned value is of type
xs:dayTimeDuration, and the value is between -PT14H hours and PT14H, inclusive. The value is the
deviation of the date-value time zone component from the UTC time zone.

If date-value does not have an explicit time zone component or is an empty sequence, the returned value
is an empty sequence.

Example

The following function returns the time zone component of the date value for March 13, 2009 in the
UTC-8 time zone.
fn:timezone-from-date(xs:date("2009-03-13-08:00"))

The returned value is -PT8H.

fn:timezone-from-dateTime function
The fn:timezone-from-dateTime function returns the time zone component of an xs:dateTime value.

Syntax

�� fn:timezone-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the time zone component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime and has an explicit time zone component, the returned value is of
type xs:dayTimeDuration, and the value is between -PT14H and PT14H, inclusive. The value is the
deviation of the dateTime-value time zone component from the UTC time zone.

If dateTime-value does not have an explicit time zone component, or is an empty sequence, the returned
value is an empty sequence.

Examples

The following function returns the time zone component of the dateTime value for October 30, 2009 at
7:30 a.m. in the UTC-8 time zone.
fn:timezone-from-dateTime(xs:dateTime("2009-10-30T07:30:00-08:00"))

The returned value is -PT8H.

216 IBM i: SQL XML Programming

The following function returns the time zone component of the dateTime value for January 1, 2009 at 2:30
p.m. in the UTC+10:30 time zone.
fn:timezone-from-dateTime(xs:dateTime("2009-01-01T14:30:00+10:30"))

The returned value is PT10H30M.

fn:timezone-from-time function
The fn:timezone-from-time function returns the time zone component of an xs:time value.

Syntax

�� fn:timezone-from-time(time-value) ��

time-value
The time value from which the time zone component is to be extracted.

time-value is of type xs:time, or is an empty sequence.

Returned value

If time-value is of type xs:time and has an explicit time zone component, the returned value is of type
xs:dayTimeDuration, and the value is between -PT14H and PT14H, inclusive. The value is the deviation
of the time-value time zone component from UTC time zone.

If time-value does not have an explicit time zone component, or is an empty sequence, the returned value
is an empty sequence.

Examples

The following function returns the time zone component of the time value for 12 noon in the UTC-5 time
zone.
fn:timezone-from-time(xs:time("12:00:00-05:00"))

The returned value is -PT5H.

In the following function, the time value for 1:00 p.m. does not have a time zone component.
fn:timezone-from-time(xs:time("13:00:00"))

The returned value is the empty sequence.

fn:tokenize function
The fn:tokenize function breaks a string into a sequence of substrings.

Syntax

�� fn:tokenize(source-string , pattern)
, flags

��

source-string
A string that is to be broken into a sequence of substrings.

source-string is a literal string, or an XPath expression that resolves to an xs:string value or the
empty sequence.

pattern The delimiter between substrings in source-string.

SQL XML programming 217

pattern is a string literal that contains a regular expression. A regular expression is a set of
characters, pattern-matching characters, and operators that define a string or group of strings in a
search pattern.

flags A string literal that can contain any of the following values that control matching of pattern to
source-string:

s Indicates that the dot (.) matches any character.

If the s flag is not specified, the dot (.) matches any character except the new line
character (#x0A).

m Indicates that the caret (^) matches the start of any line (the position after a new line
character), and the dollar sign ($) matches the end of any line (the position before a new
line character).

If the m flag is not specified, the caret (^) matches the start of the entire string, and the
dollar sign ($) matches the end of the entire string.

i Indicates that matching is case-insensitive for the letters "a" through "z" and "A" through
"Z".

If the i flag is not specified, case-sensitive matching is done.

x Indicates that whitespace characters (#x09, #x0A, #x0D, and #x20) within pattern are
ignored, unless they are within a character class. Whitespace characters in a character
class are never ignored.

If the x flag is not specified, whitespace characters are used for matching.

Returned value

If source-string is not the empty sequence or a zero-length string, the returned value is a sequence of
xs:string values that results when the following operations are performed on source-string:
v source-string is searched for characters that match pattern.
v If pattern contains two or more alternative sets of characters, and the alternative sets of characters

match characters that start at the same position in source-string, the first set of characters in pattern that
matches characters in source-string is considered to match pattern.

v Each set of characters that does not match pattern becomes an item in the result sequence.
v If pattern matches characters at the beginning of source-string, the first item in the returned sequence is

a string of length 0.
v If two successive matches for pattern are found within source-string, a string of length 0 is added to the

sequence.
v If pattern matches characters at the end of source-string, the last item in the returned sequence is a

string of length 0.

If pattern is not found in source-string, source-string is returned.

If pattern matches a string of length zero, an error is returned.

If source-string is the empty sequence, or is a zero-length string, the result is the empty sequence.

Example

The following function creates a sequence from the string "?A?B?C?D?" by removing the question mark
(?) characters and creating a sequence from the remaining characters.
fn:tokenize("?A?B?C?D?","\?")

The returned value is the sequence ("", "A", "B", "C", "D", "").

218 IBM i: SQL XML Programming

fn:translate function
The fn:translate function replaces selected characters in a string with replacement characters.

Syntax

�� fn:translate(source-string,original-string,replacement-string) ��

source-string
The string in which characters are to be converted.

source-string has the xs:string data type, or is the empty sequence.

original-string
A string that contains the characters that can be converted.

original-string has the xs:string data type.

replacement-string
A string that contains the characters that replace the characters in original-string.

replacement-string has the xs:string data type.

If the length of replacement-string is greater than the length of original-string, the additional
characters in replacement-string are ignored.

Returned value

If source-string is not the empty sequence, the returned value is the xs:string value that results when the
following operations are performed:
v For each character in source-string that appears in original-string, replace the character in source-string

with the character in replacement-string that appears at the same position as the character in
original-string.
If the length of original-string is greater than the length of replacement-string, delete each character in
source-string that appears in original-string, but the character position in original-string does not have a
corresponding position in replacement-string.
If a character appears more than once in original-string, the position of the first occurrence of the
character in original-string determines the character in replacement-string that is used.

v For each character in source-string that does not appear in original-string, leave the character as it is.

If source-string is the empty sequence, a string of length 0 is returned.

Example

The following function replaces the character a with the character A and deletes any - characters from the
string "—aaa—".
fn:translate("---aaa---","a-","A")

The returned value is "AAA".

fn:upper-case function
The fn:upper-case function converts a string to uppercase.

Syntax

�� fn:upper-case(source-string) ��

SQL XML programming 219

source-string
The string that is to be converted to uppercase.

source-string has the xs:string data type, or is an empty sequence.

Returned value

If source-string is not an empty sequence, the returned value is the xs:string value source-string, with each
character converted to its uppercase correspondent. Every character that does not have an uppercase
correspondent is included in the returned value in its original form.

If source-string is the empty sequence, the returned value is a string of length zero.

Examples

The following function converts the string 'Test literal 1' to uppercase.
fn:upper-case("Test literal 1")

The returned value is "TEST LITERAL 1".

The argument of the following function resolves to "ii".
fn:upper-case("ıi")

The returned value is "II".

fn:year-from-date function
The fn:year-from-date function returns the year component of an xs:date value that is in its localized
form.

Syntax

�� fn:year-from-date(date-value) ��

date-value
The date value from which the year component is to be extracted.

date-value is of type xs:date, or is an empty sequence.

Returned value

If date-value is of type xs:date, the returned value is of type xs:integer. The value is the year component of
the date-value, a non-negative value.

If date-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the year component of the date value for October 29, 2009.
fn:year-from-date(xs:date("2009-10-29"))

The returned value is 2009.

fn:year-from-dateTime function
The fn:year-from-dateTime function returns the year component of an xs:dateTime value that is in its
localized form.

220 IBM i: SQL XML Programming

Syntax

�� fn:year-from-dateTime(dateTime-value) ��

dateTime-value
The dateTime value from which the year component is to be extracted.

dateTime-value is of type xs:dateTime, or is an empty sequence.

Returned value

If dateTime-value is of type xs:dateTime, the returned value is of type xs:integer. The value is the year
component of the dateTime-value, a non-negative value.

If dateTime-value is an empty sequence, the returned value is an empty sequence.

Example

The following function returns the year component of the dateTime value for October 29, 2009 at 8:00
a.m. in the UTC-8 time zone.
fn:year-from-dateTime(xs:dateTime("2009-10-29T08:00:00-08:00"))

The returned value is 2009.

fn:years-from-duration function
The fn:years-from-duration function returns the years component of a duration.

Syntax

�� fn:years-from-duration(duration-value) ��

duration-value
The duration value from which the years component is to be extracted.

duration-value is an empty sequence, or is a value that has one of the following types:
xs:dayTimeDuration, xs:duration, or xs:yearMonthDuration.

Returned value

The return value depends on the type of duration-value:
v If duration-value is of type xs:yearMonthDuration or is of type xs:duration, the returned value is of type

xs:integer. The value is the years component of duration-value cast as xs:yearMonthDuration. The value
is negative if duration-value is negative.

v If duration-value is of type xs:dayTimeDuration, the returned value is of type xs:integer and is 0.
v If duration-value is an empty sequence, the returned value is an empty sequence.

The years component of duration-value cast as xs:yearMonthDuration is the integer number of years
determined by the total number of months of duration-value cast as xs:yearMonthDuration divided by 12.

Examples

The following function returns the years component of the duration -4 years, -11 months, and -320 days.
fn:years-from-duration(xs:duration("-P4Y11M320D"))

The returned value is -4.

SQL XML programming 221

The following function returns the years component of the duration 9 years and 13 months.
fn:years-from-duration(xs:yearMonthDuration("P9Y13M"))

The returned value is 10. When calculating the total number of years in the duration, 13 months is
converted to 1 year and 1 month. The duration is equal to P10Y1M which has a years component of 10
years.

Code license and disclaimer information
IBM grants you a nonexclusive copyright license to use all programming code examples from which you
can generate similar function tailored to your own specific needs.

SUBJECT TO ANY STATUTORY WARRANTIES WHICH CANNOT BE EXCLUDED, IBM, ITS
PROGRAM DEVELOPERS AND SUPPLIERS MAKE NO WARRANTIES OR CONDITIONS EITHER
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OR
CONDITIONS OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT, REGARDING THE PROGRAM OR TECHNICAL SUPPORT, IF ANY.

UNDER NO CIRCUMSTANCES IS IBM, ITS PROGRAM DEVELOPERS OR SUPPLIERS LIABLE FOR
ANY OF THE FOLLOWING, EVEN IF INFORMED OF THEIR POSSIBILITY:
1. LOSS OF, OR DAMAGE TO, DATA;
2. DIRECT, SPECIAL, INCIDENTAL, OR INDIRECT DAMAGES, OR FOR ANY ECONOMIC

CONSEQUENTIAL DAMAGES; OR
3. LOST PROFITS, BUSINESS, REVENUE, GOODWILL, OR ANTICIPATED SAVINGS.

SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR LIMITATION OF DIRECT,
INCIDENTAL, OR CONSEQUENTIAL DAMAGES, SO SOME OR ALL OF THE ABOVE LIMITATIONS
OR EXCLUSIONS MAY NOT APPLY TO YOU.

222 IBM i: SQL XML Programming

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in other countries.
Consult your local IBM representative for information on the products and services currently available in
your area. Any reference to an IBM product, program, or service is not intended to state or imply that
only that IBM product, program, or service may be used. Any functionally equivalent product, program,
or service that does not infringe any IBM intellectual property right may be used instead. However, it is
the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or
service.

IBM may have patents or pending patent applications covering subject matter described in this
document. The furnishing of this document does not grant you any license to these patents. You can send
license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property
Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some
states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this
statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically
made to the information herein; these changes will be incorporated in new editions of the publication.
IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in
any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of
the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

© Copyright IBM Corp. 2012, 2012 223

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the
exchange of information between independently created programs and other programs (including this
one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Corporation
Software Interoperability Coordinator, Department YBWA
3605 Highway 52 N
Rochester, MN 55901
U.S.A.

Such information may be available, subject to appropriate terms and conditions, including in some cases,
payment of a fee.

The licensed program described in this document and all licensed material available for it are provided
by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or
any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the
results obtained in other operating environments may vary significantly. Some measurements may have
been made on development-level systems and there is no guarantee that these measurements will be the
same on generally available systems. Furthermore, some measurements may have been estimated through
extrapolation. Actual results may vary. Users of this document should verify the applicable data for their
specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their
published announcements or other publicly available sources. IBM has not tested those products and
cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM
products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of
those products.

All statements regarding IBM's future direction or intent are subject to change or withdrawal without
notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the
products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate
them as completely as possible, the examples include the names of individuals, companies, brands, and
products. All of these names are fictitious and any similarity to the names and addresses used by an
actual business enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You may copy, modify, and distribute these sample programs
in any form without payment to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the operating platform for
which the sample programs are written. These examples have not been thoroughly tested under all
conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these
programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must include a copyright
notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp. Sample Programs.

224 IBM i: SQL XML Programming

© Copyright IBM Corp. _enter the year or years_.

Programming interface information
This SQL XML Programming publication documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM i.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business
Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be
trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at
“Copyright and trademark information” at www.ibm.com/legal/copytrade.shtml.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks
of Adobe Systems Incorporated in the United States, and/or other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Other product and service names might be trademarks of IBM or other companies.

Terms and conditions
Permissions for the use of these publications is granted subject to the following terms and conditions.

Personal Use: You may reproduce these publications for your personal, noncommercial use provided that
all proprietary notices are preserved. You may not distribute, display or make derivative works of these
publications, or any portion thereof, without the express consent of IBM.

Commercial Use: You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make derivative works of
these publications, or reproduce, distribute or display these publications or any portion thereof outside
your enterprise, without the express consent of IBM.

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either
express or implied, to the publications or any information, data, software or other intellectual property
contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of
the publications is detrimental to its interest or, as determined by IBM, the above instructions are not
being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable
laws and regulations, including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE
PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Notices 225

http://www.ibm.com/legal/copytrade.shtml

226 IBM i: SQL XML Programming

Index

A
abbreviated syntax

path expression 167
abs function 179
adjust-date-to-timezone function 180
adjust-dateTime-to-timezone

function 182
adjust-time-to-timezone function 183
annotated XML schema

decomposition 67
annotations

considerations 104
db2-xdb:column 78
db2-xdb:condition 86
db2-xdb:contentHandling 89
db2-xdb:defaultSQLSchema 70
db2-xdb:expression 83
db2-xdb:locationPath 80
db2-xdb:normalization 93
db2-xdb:order 95
db2-xdb:rowSet 71
db2-xdb:rowSetMapping 98
db2-

xdb:rowSetOperationOrder 101
db2-xdb:table 75
db2-xdb:truncate 96
overview 68
schema 127
summary 70

CDATA sections 103
data type compatibility 119
empty strings 103
examples 104, 111, 113, 114, 116, 118
keywords 102
NULL values 103
procedure 67
restrictions 126
sources 68

annotations
attributes 69
global 69

anyAtomicType data type 142
anySimpleType data type 142
anyType data type 142
archiving XML 30
arithmetic expressions 169
atomic values 128
atomization 157
attribute axis 164
attribute node 132
axis

attribute 164
child 164
descendant 164
descendant-or-self 164
parent 164
self 164

axis step 162

B
boolean data type 145
boolean function 185

C
case sensitivity

XPath 139
casts between XML schema data types

list 152
CDATA in decomposition 103
Character set 140
child axis 164
collating sequence 140
comment node 134
comments

XPath 139
compare function 185
comparison

general 171
comparison expressions

XPath 171
compatibility

data types
for decomposition 119

concat function 186
constructing XML 16

from a single table 17
from multiple tables 17
from table rows 18
special character handling 27

constructors
built-in types 141

contains function 187
context item expression 160
count function 187
current-date function 188
current-dateTime function 188
current-local-date function 188
current-local-dateTime function 189
current-local-time function 189
current-time function 190

D
data function 190
data model

generation 134
XML 128

data types
promotion 157
substitution 158
XML

compatibility for
decomposition 119

xs:anyAtomicType 142
xs:anySimpleType 142
xs:anyType 142
xs:boolean 145
xs:date 146

data types (continued)
xs:dateTime 147
xs:dayTimeDuration 150
xs:decimal 143
xs:double 144
xs:duration 149
xs:integer 145
xs:string 143
xs:time 147
xs:untyped 143
xs:untypedAtomic 143
xs:yearMonthDuration 151

date data type 146
dateTime data type 147
dateTime function 190
day-from-date function 191
day-from-dateTime function 191
days-from-duration function 192
dayTimeDuration data type 150
DB2 Xpath functions

timezone-from-dateTime 216
decimal data type 143
declarations

default namespace 156
namespace 155

DECOMP_CONTENT keyword 102
DECOMP_DOCUMENTID keyword 102
DECOMP_ELEMENTID keyword 102
default collation 140
default namespace declaration

XPath 156
descendant axis 164
descendant-or-self axis 164
distinct-values function 193
document node 130
document order 129
double data type 144
duration data type 149

E
element node 131
empty strings

annotated XML schema
decomposition 103

encoding scheme 140
evaluating expressions 157
examples

XML decomposition
grouping multiple values mapped

to single table 116
mapping to XML column 110
multiple values from different

contexts mapped to single
table 118

summary 104
value mapped to multiple

tables 114
value mapped to single table 111,

113
exists function 193

© Copyright IBM Corp. 2012, 2012 227

explicit XML parsing 14
expressions

arithmetic 169
atomization 157
context item 160
filter 168
logical 172
parenthesized 160
path 161
processing 157
subtype substitution 158
type promotion 157

F
filter expression 168
function call

XPath 160
functions

abs 179
adjust-date-to-timezone 180
adjust-dateTime-to-timezone 182
adjust-time-to-timezone 183
boolean 185
compare 185
concat 186
contains 187
count 187
current-date 188
current-dateTime 188
current-local-date 188
current-local-dateTime 189
current-local-time 189
current-time 190
data 190
dateTime 190
day-from-date 191
day-from-dateTime 191
days-from-duration 192
distinct-values 193
exists 193
hours-from-dateTime 194
hours-from-duration 195
hours-from-time 195
implicit-timezone function 196
last 196
local-name 197
local-timezone 198
lower-case 199
matches 199
max 200
min 201
minutes-from-dateTime 202
minutes-from-duration 203
minutes-from-time 203
month-from-date 204
month-from-dateTime 204
months-from-duration 205
name 206
normalize-space 207
not 207
position 208
replace 209
round 210
seconds-from-dateTime 211
seconds-from-duration 211
seconds-from-time 212

functions (continued)
starts-with 213
string 213
string-length 214
substring 214
sum 215
timezone-from-date 216
timezone-from-dateTime 216
timezone-from-time 217
tokenize 217
translate 219
upper-case 219
year-from-date 220
year-from-dateTime 221
years-from-duration 221

H
hours-from-dateTime function 194
hours-from-duration function 195
hours-from-time function 195

I
identity

node 129
implicit XML parsing 14
implicit-timezone function 196
inserting data

XML 13
overview 13

integer data type 145
internal XML encoding

considerations
for JDBC and SQLJ 58
input of XML 57

scenarios
input 59

item 128

J
Java Database Connectivity (JDBC)

XML
data encoding 58

K
kind test 164

L
last function 196
local-name function 197
local-timezone function 198
lower-case function 199

M
mapping

XML column
example 110

matches function 199
max function 200

min function 201
minutes-from-dateTime function 202
minutes-from-duration function 203
minutes-from-time function 203
month-from-date function 204
month-from-dateTime function 204
months-from-duration function 205

N
name function 206
name test 164
namespaces

using XSLT to change 24
node 129

attribute 132
comment 134
document 130
element 131
processing instruction 133
text 133

node identity 129
node properties 129
node test 164
normalize-space function 207
not function 207
NULL value

SQL
decomposition 103

numeric data types
range 145

numeric literal 158

P
parent axis 164
parsing

explicit
XML 14

implicit
XML 14

path expression
abbreviated syntax 167

performance
XML

tutorial 57
position function 208
predefined entity reference

XPath 159
processing instructionnode 133
programming languages

XML 39
prolog

XPath 155
properties

node 129
publishing XML values

examples
multiple tables 17
single table 17
table rows 18

SQL/XML functions
special character handling 27
summary 16

228 IBM i: SQL XML Programming

Q
qualified names (QNames)

XPath 140

R
regular expression

description 174
syntax 174

replace function 209
retrieving data

XML
encoding considerations 58
encoding scenarios 62, 64

round function 210
routines

XML support
encoding considerations 58

S
schemas

repository 38
seconds-from-dateTime function 211
seconds-from-duration function 211
seconds-from-time function 212
self axis 164
sequence 128
sequences

atomization 157
serialization

CCSID to encoding name
mappings 66

differences in XML document 29
effect on data conversion 59
explicit 28
implicit 28

shredding XML 67
shredding XML documents

annotated XML schemas 67
SQLJ

XML data
encoding 58

starts-with function 213
step

axis 162
storing XML data

encoding 57
considerations 57
name to CCSID mappings 66

inserting 13
overview 13

updating 37
string data type 143
string function 213
string literals

XPath 158
string-length function 214
substring function 214
subtype substitution 158
sum function 215

T
text node 133
time data type 147
timezone-from-date function 216
timezone-from-dateTime function 216
timezone-from-time function 217
tokenize function 217
translate function 219
tutorials

XML 6
creating a table 6
inserting XML documents 7
transforming with XSLT 10
updating XML documents 8
validating XML documents 8

type promotion
XPath 157

types
generic 142
numeric, range 145
overview 141
xs:anyAtomicType 142
xs:anySimpleType 142
xs:anyType 142
xs:boolean 145
xs:date 146
xs:dateTime 147
xs:dayTimeDuration 150
xs:decimal 143
xs:double 144
xs:duration 149
xs:integer 145
xs:string 143
xs:time 147
xs:untyped 143
xs:untypedAtomic 143
xs:yearMonthDuration 151

U
untyped data type 143
untypedAtomic data type 143
updates

of XML columns 37
XML columns 37

upper-case function 219

V
values

XML 135
variable references

XPath 159

W
whitespace

XML parsing 14
XPath 139

X
XML

adding XML columns 13

XML (continued)
adding XML documents to a

database 13
columns 13

application development 39
overview 39

archival data types 30
constructing 16

special character handling 27
decomposition 67
deleting 38
deleting data 38
encoding

overview 57
input methods 4
inserting 13

overview 13
model comparison 5
output methods 4
overview 3
parsing 14
performance 57

overview 57
programming language support 39
publishing 16

special character handling 27
publishing examples

multiple tables 17
single table 17
table rows 18

publishing functions
special character handling 27
summary 16

relational model comparison 5
serialization 28
SQL/XML functions

publishing 16
storage

document differences 29
encoding name to CCSID

mappings 66
transforming

XSLTRANSFORM 19, 21, 22, 27
tutorial 6

creating a table 6
inserting XML documents 7
overview 6
transforming with XSLT 10
updating XML documents 8
validating XML documents 8

updating columns 37
XML schema repository (XSR) 38
XML tutorial 6

creating a table 6
inserting XML documents 7
transforming with XSLT 10
updating XML documents 8
validating XML documents 8

XML value construction examples 16
multiple tables 17
single table 17
table rows 18

XMLTABLE examples 30, 31, 32, 34,
37

XML character reference 159
XML columns

adding 13

Index 229

XML columns (continued)
inserting into 13

overview 13
updates

examples 37
XML data

deleting 38
encoding 57

CCSIDs to encoding names 66
names to CCSID mappings 66

inserting 13
overview 13

model 5
updating 37

XML data model 128
XML data retrieval

document differences 29
XML decomposition

annotated XML schema 67
checklist 104
keywords 102

annotations
db2-xdb:column 78
db2-xdb:condition 86
db2-xdb:contentHandling 89
db2-xdb:defaultSQLSchema 70
db2-xdb:expression 83
db2-xdb:locationPath 80
db2-xdb:normalization 93
db2-xdb:order 95
db2-xdb:rowSet 71
db2-xdb:rowSetMapping 98
db2-

xdb:rowSetOperationOrder 101
db2-xdb:table 75
db2-xdb:truncate 96
overview 68
schema 127
sources 68
summary 70

CDATA sections 103
complex types 104
data type compatibility

SQL types 119
empty strings 103
examples

grouping multiple values mapped
to single table 116

mapping to XML column 110
multiple values from different

contexts mapped to single
table 118

summary 104
value mapped to multiple

tables 114
value mapped to single table

yielding multiple rows 113
value mapped to single table

yielding single row 111
keywords 102
limits 126
NULL values 103
overview 67
procedure 67
restrictions 126

XML decomposition annotations
scope 69

XML decomposition annotations
(continued)

specification 69
XML documents

archival data types 30
decomposing 67
differences after storage and

retrieval 29
enabling 67
registering 67

XML encoding
considerations

for routine parameters 58
in JDBC and SQLJ 58
input of XML 57
retrieval of XML 58

effect on data conversion 59
scenarios

input of externally encoded
data 60

input of internally encoded
data 59

retrieval with explicit
serialization 64

retrieval with implicit
serialization 62

XML namespaces 140
XML schema

data types, casts 152
XML schemas

repository
overview 38
Uniform Resource Identifier (URI)

location reference 38
XML values 135
XMLAGG aggregate function

publishing XML 16
XMLATTRIBUTES scalar function

publishing XML 16
XMLCOMMENT scalar function

publishing XML 16
XMLDOCUMENT scalar function

publishing XML 16
XMLELEMENT scalar function

publishing XML 16
XMLFOREST scalar function

publishing XML 16
XMLGROUP aggregate function

publishing XML 16
XMLNAMESPACES declaration

publishing XML 16
XMLPARSE scalar function

parsing overview 14
XMLPI scalar function

publishing XML 16
XMLROW scalar function

publishing XML 16
XMLSERIALIZE scalar function

serialization overview 28
XMLTABLE

examples 30, 31, 32, 34, 37
XMLTEXT scalar function

publishing XML 16
XPath

date and time types 146
function reference 176
numeric data types 143

XPath (continued)
overview 137
primary expressions 158
variable reference 159
XML namespaces 140

XPath expression
example 155
general format 154

XPath function call 160
XPath functions

abs 179
adjust-date-to-timezone 180
adjust-dateTime-to-timezone 182
adjust-time-to-timezone 183
boolean 185
compare 185
concat 186
contains 187
count 187
current-date 188
current-dateTime 188
current-local-date 188
current-local-dateTime 189
current-local-time 189
current-time 190
data 190
dateTime 190
day-from-date 191
day-from-dateTime 191
days-from-duration 192
distinct-values 193
exists 193
hours-from-dateTime 194
hours-from-duration 195
hours-from-time 195
implicit-timezone function 196
last 196
local-name 197
local-timezone 198
lower-case 199
matches 199
max 200
min 201
minutes-from-dateTime 202
minutes-from-duration 203
minutes-from-time 203
month-from-date 204
month-from-dateTime 204
months-from-duration 205
name 206
normalize-space 207
not 207
position 208
replace 209
round 210
seconds-from-dateTime 211
seconds-from-duration 211
seconds-from-time 212
starts-with 213
string 213
string-length 214
substring 214
sum 215
timezone-from-date 216
timezone-from-dateTime 216
timezone-from-time 217
tokenize 217

230 IBM i: SQL XML Programming

XPath functions (continued)
translate 219
upper-case 219
year-from-date 220
year-from-dateTime 221
years-from-duration 221

XPath predicate 166
XPath prolog 155
XPath type system

overview 141
xs:anyAtomicType 142
xs:anySimpleType 142
xs:anyType 142
xs:boolean 145
xs:date 146
xs:dateTime 147
xs:dayTimeDuration 150
xs:decimal 143
xs:double 144
xs:duration 149
xs:integer 145
xs:string 143
xs:time 147
xs:untyped 143
xs:untypedAtomic 143
xs:yearMonthDuration 151
XSLT transforms

example 21, 22, 24
important considerations 27
overview 19

XSLTRANSFORM scalar function
publishing XML 16

Y
year-from-date function 220
year-from-dateTime function 221
yearMonthDuration data type 151
years-from-duration function 221

Index 231

232 IBM i: SQL XML Programming

����

Product Number: 5770-SS1

Printed in USA

	Contents
	SQL XML programming
	How to read the syntax diagrams
	PDF file for SQL XML programming
	SQL statements and SQL/XML functions
	XML input and output overview
	Comparison of XML and relational models
	Tutorial for XML
	Exercise 1: Creating a table that can store XML data
	Exercise 2: Inserting XML documents into XML typed columns
	Exercise 3: Updating XML documents stored in an XML column
	Exercise 4: Validating XML documents against XML schemas
	Exercise 5: Transforming with XSLT stylesheets

	Inserting XML data
	Addition of XML columns to existing tables
	Insertion into XML columns
	XML parsing

	SQL/XML publishing functions for constructing XML values
	Example: Construct an XML document with values from a single table
	Example: Construct an XML document with values from multiple tables
	Example: Construct an XML document with values from table rows that contain null elements
	Example: Transforming with XSLT stylesheets
	Example: Using XSLT as a formatting engine
	Example: Using XSLT for data exchange
	Example: Using XSLT to remove namespaces
	Important considerations for transforming XML documents
	Special character handling in SQL/XML publishing functions
	XML serialization
	Differences in an XML document after storage and retrieval
	Data types for archiving XML documents

	Using XMLTABLE to reference XML content as a relational table
	Example: Use XMLTABLE to handle missing elements
	Example: Use XMLTABLE to subset result data
	Example: Use XMLTABLE to handle multiple values
	Example: Use XMLTABLE with namespaces
	Example: Number result rows for XMLTABLE

	Updating XML data
	Deletion of XML data from tables

	XML schema repository
	Application programming language support
	XML column inserts and updates in CLI applications
	XML data retrieval in CLI applications
	Declaring XML host variables in embedded SQL applications
	Example: Referencing XML host variables in embedded SQL applications
	Recommendations for developing embedded SQL applications with XML
	Identifying XML values in an SQLDA

	Java
	XML data in JDBC applications
	XML column updates in JDBC applications
	XML data retrieval in JDBC applications
	Invocation of routines with XML parameters in Java applications

	XML data in SQLJ applications
	XML column updates in SQLJ applications
	XML data retrieval in SQLJ applications

	Routines
	XML support in SQL procedures
	Effect of commits and rollbacks on XML parameter and variable values in SQL procedures

	XML data type support in external routines
	Example: XML support in Java (JDBC) procedure
	Example: XML support in C procedure

	XML data encoding
	Encoding considerations when storing or passing XML data
	Encoding considerations for input of XML data to a database
	Encoding considerations for retrieval of XML data from a database
	Encoding considerations for passing XML data in routine parameters
	Encoding considerations for XML data in JDBC and SQLJ applications

	Effects of XML encoding and serialization on data conversion
	Encoding scenarios for input of internally encoded XML data to a database
	Encoding scenarios for input of externally encoded XML data to a database
	Encoding scenarios for retrieval of XML data with implicit serialization
	Encoding scenarios for retrieval of XML data with explicit XMLSERIALIZE

	Mappings of encoding names to effective CCSIDs for stored XML data
	Mappings of CCSIDs to encoding names for serialized XML output data

	Annotated XML schema decomposition
	Decomposing XML documents with annotated XML schemas
	Registering and enabling XML schemas for decomposition
	Sources for annotated XML schema decomposition
	XML decomposition annotations
	Specification and scope of XML decomposition annotations
	Annotations as attributes
	Annotations as structured child elements
	Global annotations
	XML decomposition annotations - Summary
	db2-xdb:defaultSQLSchema decomposition annotation
	db2-xdb:rowSet decomposition annotation
	db2-xdb:table decomposition annotation
	db2-xdb:column decomposition annotation
	db2-xdb:locationPath decomposition annotation
	db2-xdb:expression decomposition annotation
	db2-xdb:condition decomposition annotation
	db2-xdb:contentHandling decomposition annotation
	db2-xdb:normalization decomposition annotation
	db2-xdb:order decomposition annotation
	db2-xdb:truncate decomposition annotation
	db2-xdb:rowSetMapping decomposition annotation
	db2-xdb:rowSetOperationOrder decomposition annotation
	Keywords for annotated XML schema decomposition

	Treatment of CDATA sections in annotated XML schema decomposition
	NULL values and empty strings in annotated XML schema decomposition
	Checklist for annotated XML schema decomposition
	Examples of mappings in annotated XML schema decomposition
	Annotations of derived complex types
	Decomposition annotation example: Mapping to an XML column
	Decomposition annotation example: A value mapped to a single table that yields a single row
	Decomposition annotation example: A value mapped to a single table that yields multiple rows
	Decomposition annotation example: A value mapped to multiple tables
	Decomposition annotation example: Grouping multiple values mapped to a single table
	Decomposition annotation example: Multiple values from different contexts mapped to a single table
	XML schema to SQL types compatibility for annotated schema decomposition
	Limits and restrictions for annotated XML schema decomposition
	Schema for XML decomposition annotations

	XML data model
	Sequences and items
	Atomic values
	Nodes
	Document nodes
	Element nodes
	Attribute nodes
	Text nodes
	Processing instruction nodes
	Comment nodes

	Data model generation
	XML values in SQL

	Overview of XPath
	Case sensitivity in DB2 XPath
	Whitespace in DB2 XPath
	Comments in DB2 XPath
	Character set
	Default collation
	XML namespaces and qualified names in DB2 XPath
	XPath type system
	Overview of the type system
	Constructor functions for built-in data types
	Generic data types
	xs:anyType
	xs:anySimpleType
	xs:anyAtomicType

	Data types for untyped data
	xs:untyped
	xs:untypedAtomic

	xs:string
	Numeric data types
	xs:decimal
	xs:double
	xs:integer
	Range limits for numeric types

	xs:boolean
	Date and time data types
	xs:date
	xs:time
	xs:dateTime
	xs:duration
	xs:dayTimeDuration
	xs:yearMonthDuration

	Casts between XML schema data types

	XPath prologs and expressions
	Prologs
	Namespace declarations
	Default namespace declarations

	Expression evaluation and processing
	Atomization
	Type promotion
	Subtype substitution

	Primary expressions
	Literals
	Predefined entity references
	Character references

	Variable references in DB2 XPath
	Parenthesized expression
	Context item expressions
	Function calls

	Path expressions
	Axis steps
	Axes
	Node tests
	Predicates

	Abbreviated syntax for path expressions

	Filter expressions
	Arithmetic expressions
	Comparison expressions
	General comparisons

	Logical expressions
	Regular expressions

	Descriptions of XPath functions
	fn:abs function
	fn:adjust-date-to-timezone function
	fn:adjust-dateTime-to-timezone function
	fn:adjust-time-to-timezone function
	fn:boolean function
	fn:compare function
	fn:concat function
	fn:contains function
	fn:count function
	fn:current-date function
	fn:current-dateTime function
	db2-fn:current-local-date function
	db2-fn:current-local-dateTime function
	db2-fn:current-local-time function
	fn:current-time function
	fn:data function
	fn:dateTime function
	fn:day-from-date function
	fn:day-from-dateTime function
	fn:days-from-duration function
	fn:distinct-values function
	fn:exists function
	fn:hours-from-dateTime function
	fn:hours-from-duration function
	fn:hours-from-time function
	fn:implicit-timezone function
	fn:last function
	fn:local-name function
	db2-fn:local-timezone function
	fn:lower-case function
	fn:matches function
	fn:max function
	fn:min function
	fn:minutes-from-dateTime function
	fn:minutes-from-duration function
	fn:minutes-from-time function
	fn:month-from-date function
	fn:month-from-dateTime function
	fn:months-from-duration function
	fn:name function
	fn:normalize-space function
	fn:not function
	fn:position function
	fn:replace function
	fn:round function
	fn:seconds-from-dateTime function
	fn:seconds-from-duration function
	fn:seconds-from-time function
	fn:starts-with function
	fn:string function
	fn:string-length function
	fn:substring function
	fn:sum function
	fn:timezone-from-date function
	fn:timezone-from-dateTime function
	fn:timezone-from-time function
	fn:tokenize function
	fn:translate function
	fn:upper-case function
	fn:year-from-date function
	fn:year-from-dateTime function
	fn:years-from-duration function

	Notices
	Programming interface information
	Trademarks
	Terms and conditions

	Index
	A
	B
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	N
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

